DOI QR코드

DOI QR Code

Rietveld Analysis of Nano-crystalline MnFe2O4 with Electron Powder Diffraction

  • Kim, Jin-Gyu (Division of Electron Microscopic Research, Korea Basic Science Institute) ;
  • Seo, Jung-Wook (Plating Technology Group, Samsung Electromechanics) ;
  • Cheon, Jin-Woo (Department of Chemistry, Yonsei University) ;
  • Kim, Youn-Joong (Division of Electron Microscopic Research, Korea Basic Science Institute)
  • Published : 2009.01.20

Abstract

The structure of nano-crystalline $MnFe_2O_4$ was determined and refined with electron powder diffraction data employing the Rietveld refinement technique. A nano-crystalline sample (with average crystal size of about 10.9 nm) was characterized by selected area electron diffraction in an energy-filtering transmission electron microscope operated at 120 kV. All reflection intensities were extracted from a digitized image plate using the program ELD and then used in the course of structure refinements employing the program FULLPROF for the Rietveld analysis. The final structure was refined in space group Fd-3m (# 227) with lattice parameters a=8.3413(7) $\AA$. The reliability factors of the refinement are $R_F$=7.98% and $R_B$=3.55%. Comparison of crystallographic data between electron powder diffraction data and reference data resulted in better agreement with ICSD-56121 rather than with ICSD-28517 which assumes an initial structure model.

Keywords

References

  1. Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater. 2001, 13, 109 https://doi.org/10.1021/cm001164h
  2. Xiong, Y.; Xie, X.; Chen, S.; Li, Z. Chem. Eur. J. 2003, 9, 4991 https://doi.org/10.1002/chem.200305118
  3. Yu, A.; Mizuno, M.; Sasaki, Y.; Kondo, H. Appl. Phys. Lett. 2002, 81, 3768 https://doi.org/10.1063/1.1521569
  4. Chaubey, C. S.; Kim, J. Bull. Korean Chem. Soc. 2007, 12, 2279
  5. Jung, J. S.; Malkinski, L.; Lim, J. H.; Yu, M.; O'Connor, C. J.; Lee, H. O.; Kim, E. M. Bull. Korean Chem. Soc. 2008, 29, 758 https://doi.org/10.5012/bkcs.2008.29.4.758
  6. Gillot, B. Eur. Phys. J. Appl. 1998, 4, 243 https://doi.org/10.1051/epjap:1998267
  7. Sugimoto, M. J. Am. Ceram. Soc. 1999, 82, 269 https://doi.org/10.1111/j.1551-2916.1999.tb20058.x
  8. Tang, Z. X.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C. Phys. Rev. Lett. 1991, 67, 3602 https://doi.org/10.1103/PhysRevLett.67.3602
  9. Kulkarni, G. U.; Kannan, K. R.; Arunarkavalli, T.; Rao, C. N. R. Phys. Rev. B 1994, 49, 724 https://doi.org/10.1103/PhysRevB.49.724
  10. Van der Zaag, P. J.; Brabers, V. A.; Johnson, M. T.; Noord-ermeer, A.; Bongers, P. E. Phys. Rev. B 1995, 51, 12009 https://doi.org/10.1103/PhysRevB.51.12009
  11. Lee, J. H.; Huh, Y. M.; Jun, Y, W.; Seo, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J. Nature Medicine 2007, 13, 95 https://doi.org/10.1038/nm1467
  12. Weirich, T. E.; Winterer, M.; Seifried, S.; Hahn, H.; Fuess, H. Ultramicroscopy 2000, 81, 263 https://doi.org/10.1016/S0304-3991(99)00189-8
  13. Weirich, T. E.; Winterer, M.; Seifried, S.; Mayer, J. Acta Cryst. 2002, A58, 308
  14. Cheon, J.; Seo, J. W.; Lee, J. H. Korea Patent PCT WO2006/ 052042
  15. Roisnel, T.; Rodriguez-Carvajal, J. WINPLOTR, a New Tool for Powder Diffraction; Laboratoire Leon Brillouin: CEA-Saclay, France, 2000
  16. CRYFIRE is written by Shriley, R. et al., and distributed free for non-profit use from the CCP14 website: http://www.ccp14. ac.uk/tutorial/crys
  17. CHECKCELL is written by Laugier, J. & Bochu, B. and distributed free from the CCP14 website: http://www.ccp14. ac.uk/tutorial/lmgp/
  18. Koenig, U.; Chol, G. J. Appl. Cryst. 1968, 1, 124 https://doi.org/10.1107/S0021889868005145
  19. Rodriguez-Carvajal, J. FULLPROF-A program for Rietveld, profile matching and integrated intensities refinement of X-ray and/or neutron data; Laboratoire Leon Brillouin: CEA-Saclay, France, 2000
  20. Jiang, J. S.; Li, F. H. Acta Phys. Sin. 1984, 33, 845
  21. Thomson, P.; Cox, D. E.; Hasting, J. B. J. Appl. Cryst. 1987, 20, 79 https://doi.org/10.1107/S0021889887087090
  22. Holgersson, S. Lunds Univ. ArssKrift, N. F., Avd. 2 1927, 23, 9; Kungl. Fysiogr. Sallsk. Handl., N. F., 38, 9
  23. Wang, J.; Chen, Q.; Hou, B.; Peng, Z. Eur. J. Inorg. Chem. 2004, 1165
  24. Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Angew. Chem. 2005, 117, 2
  25. Cowely, J. M. International Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, 1999; Vol. C, pp 80-82, 259-262
  26. Vincent, R.; Mldgley, P. A. Ultramicroscopy 1994, 53, 271 https://doi.org/10.1016/0304-3991(94)90039-6
  27. Weirich, T. E.; Portillo, J.; Cox, G.; Hibst, H.; Nicolopoulos, S. Ultramicroscopy 2006, 106, 164 https://doi.org/10.1016/j.ultramic.2005.07.002
  28. Boulahya, K.; Ruiz-Gonzalez, L.; Parras, M.; Gonzalez-Calbet, J. M.; Nickolsky, M. S.; Nicolopoulos, S. Ultramicroscopy 2007, 107, 445 https://doi.org/10.1016/j.ultramic.2006.03.008
  29. Dorset, D. L.; Gilmore, C. J.; Jorda, J. L.; Nicolopoulos, S. Ultramicroscopy 2007, 107, 462 https://doi.org/10.1016/j.ultramic.2006.05.013
  30. Oleynikov, P.; Hovmoller, S.; Zou, X. D. Ultramicroscopy 2007, 107, 523 https://doi.org/10.1016/j.ultramic.2006.04.032

Cited by

  1. Preliminary study on dinosaur rib microstructure by applying correlative microscopy techniques vol.15, pp.3, 2011, https://doi.org/10.1007/s12303-001-0026-1
  2. Application of theta-scan precession electron diffraction to structure analysis of hydroxyapatite nanopowder vol.61, pp.1, 2011, https://doi.org/10.1093/jmicro/dfr078
  3. Development of Multi-sample Loading Device for TEM Characterization of Hydroxyapatite Nanopowder vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.788
  4. Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns vol.70, pp.5, 2014, https://doi.org/10.1107/S2053273314009930
  5. Total-Scattering Pair-Distribution Function of Organic Material from Powder Electron Diffraction Data vol.21, pp.02, 2015, https://doi.org/10.1017/S1431927614014561
  6. Structure induced tunable magnetic properties of Zn substituted Mn1−x Zn x Fe2O4 (x = 0–1) NPs vol.12, pp.3, 2017, https://doi.org/10.1049/mnl.2016.0555
  7. A Green approach: synthesis, characterization and opto-magnetic properties of MgxMn1−xFe2O4 spinel nanoparticles vol.28, pp.14, 2017, https://doi.org/10.1007/s10854-017-6800-2
  8. Characterization of nanograined powder samples using the Rietveld method applied to electron diffraction ring patterns vol.32, pp.S1, 2017, https://doi.org/10.1017/S0885715617000343
  9. The Sensitive and Selective Enzyme-Free Electrochemical H2O2 Sensor Based on rGO/MnFe2O4 Nanocomposite vol.9, pp.1, 2018, https://doi.org/10.1007/s12678-017-0418-2
  10. Determination of the tegengrenite superstructure: another case of tetrahedral Mn3+ in spinel-type minerals? vol.79, pp.02, 2015, https://doi.org/10.1180/minmag.2015.079.2.19
  11. Particle anisotropy and crystalline phase transition in one-pot synthesis of nano-zirconia: a causal relationship vol.20, pp.7, 2018, https://doi.org/10.1039/C7CE01949A
  12. Synthesis and structure of some nano-sized rare-earth metal ions doped potassium hexacyanoferrates vol.69, pp.None, 2009, https://doi.org/10.1016/j.physe.2015.01.001
  13. Enhanced Charge‐ Discharge Behaviour of MnFe 2 O 4 laden Composite Cathode for Lithium‐Sulfur Batteries vol.6, pp.30, 2009, https://doi.org/10.1002/slct.202101479