DOI QR코드

DOI QR Code

Synthesis of Heteroarylferrocenes by FriedlanderReaction and Their Spectral Properties

  • Published : 2009.12.20

Abstract

A series of mono- and 1,1'-bis(heteroaryl)-substituted ferrocenes were prepared by employing Frielander reaction of acetyl- and 1,1'-diacetylferrocene with a series of o-aminoaldehydes. Reactions of 1,1'-diacetylferrocene with two equivalents of 1-aminonaphthalene-2-carbaldehyde and 8-aminoquinoline-7-carbaldehyde afforded a mixture of mono- and 1,1'-bis(heteroaryl)-substituted ferrocenes in a ratio of 1 : 3.1 - 3.8, while the reaction with 4-aminoacridine-3-carbaldehyde did not provide any characterizable product presumably due to the redox instability of the product induced by low reduction potential of benzo[b]-1,10-phenanthroline. Structural and optical properties of the compounds prepared were described.

Keywords

References

  1. (a) Kealy, T. J.; Pauson, P. I. Nature 1951, 168, 1039.(Please refer to the other references for details:no.24) https://doi.org/10.1038/1681039b0
  2. (a)Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74, 2125.(Please refer to the other references for details:no.25) https://doi.org/10.1021/ja01128a527
  3. (a) Holm, C. H.; Ibers, J. A. J. Chem. Phys. 1959, 30, 885.(Please refer to the other references for details:no.26) https://doi.org/10.1063/1.1730120
  4. (a) Shimizu, I.; Kamei, Y.; Tezuka, T.; Izumi, T.; Kasahara, A. Bull. Chem. Soc. Jpn. 1983, 56, 192. (Please refer to the other references for details:no.27-no.28) https://doi.org/10.1246/bcsj.56.192
  5. Gelin, F.; Thummel, R. P. J. Org. Chem. 1992, 57, 3780 https://doi.org/10.1021/jo00040a012
  6. Fuchs, B.; Frohlich, R.; Musso, H. Chem. Ber. 1986, 118, 1968 https://doi.org/10.1002/cber.19851180521
  7. (a) Atkinson, R. C. J.; Gibson, V. C.; Long, N. J. Chem. Soc. Rev. 2004, 33, 313.(Please refer to the other references for details:no.29) https://doi.org/10.1039/b316819k
  8. (a) Chen, C.-G.; Hou, X.-L.; Pu, L. Org. Lett. 2009, 11, 2073. (Please refer to the other references for details:no.30) https://doi.org/10.1021/ol900439h
  9. (a) Ferrocenes: Homogenous Catalysis – Organic Synthesis – Material Science; Togni, A.; Hayashi, T., Eds.; VCH: Weinheim, Germany, 1995.(Please refer to the other references for details:no.31-no.32)
  10. Utepova, I. A.; Chupakhin, O. N.; Charushin, V. N. Heterocycles 2008, 76, 39 https://doi.org/10.3987/REV-08-SR(N)1
  11. (a) Chea, J. M.; Jahng, Y. Heterocycles 2009, 78, 1573.(Please refer to the other references for details:no.33) https://doi.org/10.3987/COM-09-11666
  12. (a) Opie, J. W.; Smith, L. I. Org. Syn. Col. Vol. III 1955, 56. (Please refer to the other references for details:no.34-no.37)
  13. Commercially available: we employed acetylferrocene and 1,1'- diacetylferrocene from Lancaster Chemical Company
  14. Rosenblum, M.; Woodward, R. B. J. Am. Chem. Soc. 1958, 80, 5443 https://doi.org/10.1021/ja01553a032
  15. Recent example of base-catalyzed deacetylation of heteroaromatics: (a) Rahman, A. F. M. M.; Kwon, Y.; Jahng, Y. Heterocycles 2005, 65, 2777.(Please refer to the other references for details:no.38-no.41) https://doi.org/10.3987/COM-05-10534
  16. Tabner, B. J.; Yandle, J. R. J. Chem. Soc. 1968, 381
  17. Jahng, Y.; Park, J. G.; Yu, J. W. Bull. Kor. Chem. Soc. 2000, 21, 333
  18. (a) Butler, I. R.; Roustan, J.-L. Can. J. Chem. 1990, 68, 2212.(Please refer to the other references for details:no.42) https://doi.org/10.1139/v90-339
  19. (a) Koft, E.; Case, F. H. J. Org. Chem. 1962, 27, 865.(Please refer to the other references for details:no.43) https://doi.org/10.1021/jo01050a042
  20. Pretsch, E. J.; Seibl, W.; Simon; Clerc, T. Tables of Spectral Data for Structure Determination of Organic Compounds. 13C-NMR, 1H NMR, IR, MS, and UV/VIS-Chemical Laboratory Practice, 2nd Ed.; Springer-Verlag: Berlin Heidelberg, 1989
  21. (a) Rosenblum, M. Chemistry of The Iron Group Metallocenes; Interscience Publishers: New York, 1965; Part 1, p. 42. (Please refer to the other references for details:no.44)
  22. Jaffe, H. H. J. Chem. Phys. 1953, 21, 156 https://doi.org/10.1063/1.1698568
  23. Barr, T. H.; Watts, W. E. J. Organomet. Chem. 1968, 15, 177 https://doi.org/10.1016/S0022-328X(00)86337-8
  24. (b) Miller, S. A.; Tebboth, J. A.; Tremaine, J. F. J. Chem. Soc. 1952, 632. https://doi.org/10.1039/jr9520000632
  25. (b) Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74, 3458. https://doi.org/10.1021/ja01133a543
  26. (b) Mulay, L. N.; Attalla, A. J. Am. Chem. Soc. 1963, 85, 702. https://doi.org/10.1021/ja00889a013
  27. (b) Shimizu, I.; Umezawa, H.; Kanno, T.; Izumi, T.; Kasahara, A. Bull. Chem. Soc. Jpn. 1983, 56, 2023. https://doi.org/10.1246/bcsj.56.2023
  28. (c) Kasaha, A.; Inuni, T.; Shimiiu, I.; Oikawa, T.; Umezawa, H.; Murakami, M.; Watanabe, O. Bull. Chem. Soc. Jpn. 1985, 58, 1560. https://doi.org/10.1246/bcsj.58.1560
  29. (b) Constable, E. C. Angew. Chem. Int. Ed. Engl. 1991, 30, 407. https://doi.org/10.1002/anie.199104071
  30. (b) Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. Pure Appl. Chem. 2008, 80, 1109 https://doi.org/10.1351/pac200880051109
  31. (b) Beer, P. D.; Hayes, E. J. Coord. Chem. Rev. 2003, 240, 167. https://doi.org/10.1016/S0010-8545(02)00303-X
  32. (c) Hong, J. H.; Bui, N. N.; Mho, S. I.; Cho, W. S.; Jang, H. Y. Bull. Kor. Chem. Soc. 2008, 29, 2097 https://doi.org/10.5012/bkcs.2008.29.11.2097
  33. (b) Rahman, A. F. M. M.; Jahng, Y. Heterocycles 2008, 75, 2507, and references therein https://doi.org/10.3987/COM-08-11423
  34. (b) Majewicz, G.; Caluwe, O. A. J. Org. Chem. 1974, 39, 720. https://doi.org/10.1021/jo00919a033
  35. (c) Hung, C.-Y.; Wang, T.-L.; Shi, Z.; Thummel, R. P. Tetrahedron 1994, 50, 10685. https://doi.org/10.1016/S0040-4020(01)89260-7
  36. (d) Riesgo, E. C.; Jin, X.; Thummel, R. P. J. Org. Chem. 1996, 61, 3017. https://doi.org/10.1021/jo952164h
  37. (e) Son, J. K.; Son, J. K.; Jahng, Y. Heterocycles 2002, 57, 1109 https://doi.org/10.3987/COM-02-9487
  38. (b) Attanasi, O. A.; Filippone, P.; Fiorucci, C.; Foresti, E.; Mantellini, F. J. Org. Chem. 1998, 63, 9880. https://doi.org/10.1021/jo9816515
  39. Strong alkali-catalyzed predeacetylation of 2,4-pentanedione to acetone was also reported, see: Stefanovic, G.; Lorenc, P.-W. M.; Lorenc, L.; Mihailovic, M. L. Tetrahedron 1959, 6, 97. https://doi.org/10.1016/0040-4020(59)85001-8
  40. Examples of base-catalyzed deacetylation of acylacetone to methyl ketone:a) Fischer, F.; Bulow, C. Ber. 1885, 18, 2132.
  41. b) Connor, R.;Adkins, H. J. Am. Chem. Soc. 1932, 54, 3420. https://doi.org/10.1021/ja01347a065
  42. (b) Chupakhin, O. N.; Utepova, I. A.; Kovvalev, I. S.; Rusonov, V. L.; Starikova, Z. A. Eur. J. Org. Chem. 2007, 857. https://doi.org/10.1002/ejoc.200600821
  43. (b) Motiur, A. F. M.; Kwon, Y. J.; Jahng, Y. Heterocycles 2005, 65, 2777 https://doi.org/10.3987/COM-05-10534
  44. (b) Nielson, D.; Farmer, M.; Eyring, H. J. Phys. Chem. 1976, 80, 717 https://doi.org/10.1021/j100548a012

Cited by

  1. ChemInform Abstract: Synthesis of Heteroarylferrocenes by Friedlaender Reaction and Their Spectral Properties. vol.41, pp.18, 2010, https://doi.org/10.1002/chin.201018188
  2. Construction of five- and six-membered heterocycles on both Cp rings of the ferrocene moiety of α-oxoketene-S,S-acetal and β-oxodithioester via heteroaromatic annulation vol.3, pp.1, 2009, https://doi.org/10.1039/c2ra21744a
  3. Synthesis and (Spectro)electrochemistry of Ferrocenyl‐Substituted Pyridine Derivatives vol.2015, pp.33, 2009, https://doi.org/10.1002/ejoc.201501163
  4. Synthesis of Ferrocene Tethered Heteroaromatic Compounds Using Solid Supported Reaction Method, their Cytotoxic Evaluation and Fluorescence Behavior. vol.4, pp.15, 2009, https://doi.org/10.1002/slct.201901088
  5. Modulation of Chiroptical Properties in a Series of Helicene-like Compounds vol.84, pp.17, 2009, https://doi.org/10.1021/acs.joc.9b01465