DOI QR코드

DOI QR Code

Alum Catalyzed Simple and Efficient Synthesis of Bis(indolyl)methanes by Ultrasound Approach

  • Sonar, Swapnil S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Sadaphal, Sandip A. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Kategaonkar, Amol H. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Pokalwar, Rajkumar U. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingate, Bapurao B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingare, Murlidhar S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Published : 2009.04.20

Abstract

Alum $(KAl(SO_4)_2{\cdot}12H_2O)$ is an inexpensive, efficient, non‐toxic and mild catalyst for the synthesis of bis(indolyl)methanes by the reaction of 1H-indole with various aldehydes/ketones under the influence of ultrasound irradiation in solvent‐free condition. The remarkable advantages of this method are the simple experimental procedures, shorter reaction times, high yields of product and green aspects by avoiding toxic catalysts and solvents.

Keywords

References

  1. Sundberg, R. J. In The Chemistry of Indoles; Academic Press:New York, 1996; p 113.
  2. Snieckus, V. In The Alkaloids; Academic Press: New York, 1968; Vol. 11, p 1.
  3. Gribble, G. W. In Comprehensive Heterocyclic Chemistry, 2nd ed.; Pergamom Press: New York, 1996; Vol. 2, p 211.
  4. Morris, S. A.; Anderson, R. J. Tetrahedron 1990, 46, 715. https://doi.org/10.1016/S0040-4020(01)81355-7
  5. Bifulco, G.; Bruno, I.; Riccio, R.; Lavayre, J.; Bourdy, G. J. Nat. Prod. 1995, 58, 1254. https://doi.org/10.1021/np50122a017
  6. Miyake, F. Y.; Yakushijin, K.; Horne, D. A. Org. Lett. 2002, 4, 941. https://doi.org/10.1021/ol020002j
  7. Jiang, B.; Yang, C. G.; Wang, J. J. J. Org. Chem. 2002, 67, 1389.
  8. Hong, C.; Firestone, G. L.; Bjeldanes, L. F. Biochem. Pharmacol. 2002, 63, 1085. https://doi.org/10.1016/S0006-2952(02)00856-0
  9. Ge, X.; Yannai, S.; Rennert, G.; Gruener, N.; Fares, F. A. Biochem. Biophys. Res. Commun. 1996, 228, 153. https://doi.org/10.1006/bbrc.1996.1631
  10. Kamal, A.; Qureshi, A. A. Tetrahedron 1963, 19, 513. https://doi.org/10.1016/S0040-4020(01)98540-0
  11. Babu, G.; Sridhar, N.; Perumal, P. T. Synth. Commun. 2000, 30, 1609. https://doi.org/10.1080/00397910008087197
  12. Yadav, J. S.; Reddy, B. V. S.; Murthy, V. S. R.; Kumar, G. M.; Madan, C. Synthesis 2001, 783.
  13. Koshima, H.; Matsuaka, W. J. Heterocyclic Chem. 2002, 39, 1089. https://doi.org/10.1002/jhet.5570390539
  14. Nagarajan, R.; Perumal, P. T. Synth. Commun. 2002, 32, 105. https://doi.org/10.1081/SCC-120001515
  15. Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv. Synth. Catal. 2003, 345, 557. https://doi.org/10.1002/adsc.200303022
  16. Ramesh, C.; Ravindranath, N.; Das, B. J. Chem. Res. Synop. 2003, 72.
  17. Bandgar, B. P.; Shaikh, K. A. J. Chem. Res. Synop. 2004, 34.
  18. Nagarajan, R.; Perumal, P. T. Chem. Lett. 2004, 33, 288. https://doi.org/10.1246/cl.2004.288
  19. Nagawade, R. R.; Shide, D. B. Bull. Korean Chem. Soc. 2005, 26, 12.
  20. Nagawade, R. R.; Shinde, D. B. Acta Chin. Slov. 2006, 53, 210.
  21. Zolfigol, M. A.; Salehi, P.; Shiri, M.; Tankouchian, Z. Catal. Commun. 2007, 8, 1731.
  22. Hasaninejad, A.; Zare, A.; Sharghi, H.; Niknam, K.; Shekouhya, M. Arkivoc 2007, xiv, 39.
  23. Srinivasa, A.; Varma, P. P.; Hulikal, V. Monat. Fur. Chemie. 2008, 139, 111. https://doi.org/10.1007/s00706-007-0697-z
  24. Nezhad, A. K.; Parhami, A.; Zare, A.; Zare, A. R. M.; Hasaninejad, A.; Panahi, F. Synthesis 2008, 617.
  25. Reddy, A. V.; Ravinder, R.; Reddy, V. L. N.; Goud, T. V.; Ravikanth, V.; Venkateseswarlu, Y. Synth. Commun. 2003, 33, 3687. https://doi.org/10.1081/SCC-120025177
  26. Karthik, M.; Tripathi, A. K.; Gupta, N. M.; Palanichamy, M.; Murugesan, V. Catal. Commun. 2004, 5, 371. https://doi.org/10.1016/j.catcom.2004.04.007
  27. Chakrabarty, M.; Gosh, N.; Basak, R.; Harigaya, Y. Tetrahedron Lett. 2002, 43, 4075. https://doi.org/10.1016/S0040-4039(02)00682-2
  28. Pnieres-Carrillo, G.; Garcia-Estrada, J. G.; Gutierrez-Ramirez, J. L.; Alvarez-Toledano, C. Green Chem. 2003, 5, 337. https://doi.org/10.1039/b211011c
  29. Yadav, J. S.; Reddy, B. V. S.; Sunitha, S. Adv. Synth. Catal. 2003, 345, 349. https://doi.org/10.1002/adsc.200390038
  30. Ji, S. J.; Zhou, M. F.; Gu, D. G.; Wang, S. Y.; Loh, T. P. Synlett 2003, 2077.
  31. Ji, S. J.; Zhou, M. F.; Gu, D. G.; Jiang, Z. Q.; Loh, T. P. Eur. J. Org. Chem. 2004, 1584.
  32. Sadaphal, S. A.; Sonar, S. S.; Shingare, M. S. Central Euro. J. Chem. 2008, 6, 622. https://doi.org/10.2478/s11532-008-0069-5
  33. Chen, D.; Yu, L.; Wang, P. G. Tetrahedron Lett. 1996, 37, 4467. https://doi.org/10.1016/0040-4039(96)00958-6
  34. Nagarajan, R.; Perumal, P. T. Tetrahedron 2002, 58, 1229. https://doi.org/10.1016/S0040-4020(01)01227-3
  35. Mi, X. L.; Luo, S. Z.; He, J. Q.; Cheng, J. P. Tetrahedron Lett. 2004, 45, 4567. https://doi.org/10.1016/j.tetlet.2004.04.039
  36. Feng, X. L.; Guan, C. J.; Zhao, C. X. Synth. Commun. 2004, 34, 487. https://doi.org/10.1081/SCC-120027288
  37. Wang, L. M.; Han, J. W.; Tian, H.; Sheng, J.; Fan, Z. Y.; Tang, X. P. Synlett 2005, 337.
  38. Tanaka, K. F. Chem. Rev. 2000, 100, 1025. https://doi.org/10.1021/cr940089p
  39. Mason, T. J.; Lorimer, J. P. In Sonochemistry: Theory, Application and Uses of Ultrasound in Chemistry; John Wiley and Son: New York, 1988.
  40. Suslick, K. S. In Ultrasound, its Chemical, Physical and Biological Effects; VCH: Weinheim, 1988.
  41. Gaplovsky, A.; Gaplovsky, M.; Toma, S.; Luche, J. L. J. Org. Chem. 2000, 65, 8444. https://doi.org/10.1021/jo000611+
  42. Deshmukh, R. R.; Rajagopal, R.; Srinivasan, K. V. Chem. Commun. 2001, 544.
  43. Azizian, J.; Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R. J. Org. Chem. 2005, 70, 350. https://doi.org/10.1021/jo049138g
  44. Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A. A. Tetrahedron Lett. 2005, 46, 6123. https://doi.org/10.1016/j.tetlet.2005.06.157
  45. Azizian, J.; Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R. Applied Catalysis 2006, 300, 85. https://doi.org/10.1016/j.apcata.2005.11.001
  46. Dabiri, M.; Baghbanzadeh, M.; Kiani, S.; Vakilzadeh, Y. Monatshefte Fur Chieme 2007, 138, 997. https://doi.org/10.1007/s00706-007-0666-6
  47. Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Bahramnejad, M. Monatshefte Fur Chieme, 2007, 138, 1253. https://doi.org/10.1007/s00706-007-0724-0
  48. Dabiri, M.; Baghbanzadeh, M.; Nikcheh, M. S.; Arzroomchilar, E. Bioorg. Med. Chem. Lett. 008, 18, 436. https://doi.org/10.1016/j.bmcl.2007.07.008
  49. Mahajan, D.; Nagvi, T.; Sharma, R. L.; Kapoor, K. K. Australian J. Chem. 2008, 61, 159. https://doi.org/10.1071/CH07316
  50. Mohammadi, A. A.; Mivechi, M.; Kefayati, H. Monatshefte Fur Chieme 2008, 139, 935. https://doi.org/10.1007/s00706-008-0875-7
  51. Pawar, S. S.; Dekhane, D. V.; Shingare, M. S.; Thore, S. N. Australian J. Chem. 2008, 61, 905. https://doi.org/10.1071/CH08122
  52. Hangarge, R. V.; Sonwane, S. A.; Jarikote, D. V.; Shingare, M. S. Green Chem. 2001, 3, 310. https://doi.org/10.1039/b106871g
  53. Hangarge, R. V.; Jarikote, D. V.; Shingare, M. S. Green Chem. 2002, 4, 266. https://doi.org/10.1039/b111634g
  54. Madje, B. R.; Patil, P. T.; Shindalkar, S. S.; Benjamin, S. B.; Dongare, M. K.; Shingare, M. S. Catalysis Commun. 2004, 5, 353. https://doi.org/10.1016/j.catcom.2004.04.004
  55. Pawar, S. S.; Dekhane, D. V.; Shingare, M. S.; Thore, S. N. Tetrahedron Lett. 2008, 49, 4252. https://doi.org/10.1016/j.tetlet.2008.04.148
  56. Pawar, S. S.; Uppalla, L. S.; Shingare, M. S.; Thore, S. N. Tetrahedron Lett. 2008, 49, 5858. https://doi.org/10.1016/j.tetlet.2008.07.101

Cited by

  1. )-one Derivatives pp.0022152X, 2013, https://doi.org/10.1002/jhet.1075
  2. Synthesis of bis(indolyl)methanes using ammonium niobium oxalate (ANO) as an efficient and recyclable catalyst vol.17, pp.8, 2015, https://doi.org/10.1039/C5GC00932D
  3. Efficient synthesis of bis(indolyl)methanes, bispyrazoles and biscoumarins using 4-sulfophthalic acid vol.43, pp.3, 2017, https://doi.org/10.1007/s11164-016-2720-7
  4. Synthesis of symmetric triarylmethane derivatives catalyzed by AIL ionic liquid vol.149, pp.1, 2018, https://doi.org/10.1007/s00706-017-2053-2
  5. -heterocycles vol.48, pp.5, 2018, https://doi.org/10.1080/00397911.2017.1406521
  6. ChemInform Abstract: Alum Catalyzed Simple and Efficient Synthesis of Bis(indolyl)methanes by Ultrasound Approach. vol.40, pp.36, 2009, https://doi.org/10.1002/chin.200936111
  7. Cu(II) Anchored on Modified Magnetic Nanoparticles: As a Green and Efficient Recyclable Nano Catalyst for One Pot Synthesis of 12-Aryl-8,9,10,12tetrahydrobenzo[a]xanthene-11-oneʺ pp.1563-5333, 2019, https://doi.org/10.1080/10406638.2018.1531431
  8. Solvent-free sonochemical preparation of +/--aminophosphonates catalyzed by 1-hexanesulphonic acid sodium salt vol.17, pp.5, 2010, https://doi.org/10.1016/j.ultsonch.2010.02.002
  9. An Efficient Synthesis of 3,4-Dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine Derivatives Catalyzed by Zirconyl(IV) Chloride and Evaluation of its Biological Activities vol.31, pp.6, 2009, https://doi.org/10.5012/bkcs.2010.31.6.1657
  10. Potash alum [KAl(SO 4 ) 2 .12H 2 O] catalysed esterification of formylphenoxyaliphatic acids vol.124, pp.4, 2009, https://doi.org/10.1007/s12039-012-0267-8
  11. PEG-SO3H as a Catalyst for the Preparation of Bis-Indolyl and Tris-Indolyl Methanes in Aqueous Media vol.42, pp.14, 2009, https://doi.org/10.1080/00397911.2010.551700
  12. A convenient, eco-friendly, and efficient method for synthesis of bis(3-indolyl)methanes “on-water” vol.5, pp.3, 2009, https://doi.org/10.1080/17518253.2011.630027
  13. Ultrasound-assisted synthesis of diversely functionalized tetrahydro-1H-Indole-4(5H)-one using Brønsted base silica sodium carbonate (SSC) as a catalyst under solvent-free conditions vol.46, pp.13, 2009, https://doi.org/10.1080/00397911.2016.1189575
  14. Metal free synthesis of tetrahydrobenzo[a]xanthenes using orange peel as a natural and low cost efficient heterogeneous catalyst vol.6, pp.90, 2009, https://doi.org/10.1039/c6ra17607k
  15. A thermodynamical, electrochemical and surface investigation of Bis (indolyl) methanes as Green corrosion inhibitors for mild steel in 1M hydrochloric acid solution vol.21, pp.None, 2009, https://doi.org/10.1016/j.jaubas.2015.04.003
  16. Synthesis of Bis(indolyl)methanes Using Hyper-Cross-Linked Polyaromatic Spheres Decorated with Bromomethyl Groups as Efficient and Recyclable Catalysts vol.3, pp.2, 2009, https://doi.org/10.1021/acsomega.7b01925
  17. Recent Developments on the Synthesis of Biologically Significant bis/tris(indolyl)methanes under Various Reaction Conditions: A Review vol.24, pp.None, 2009, https://doi.org/10.2174/1385272824666200228092752