DOI QR코드

DOI QR Code

Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model

  • Lim, Kyung-Hee (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • Published : 2009.09.20

Abstract

Temperature dependence of the critical micelle concentration (CMC), $x_{CMC}$, in micellization can be described by ln $x_{CMC}$ = A + BT + C lnT + D/T, which has been derived statistical-mechanically. Here A, B, C, and D are fitting parameters. The equation fits the CMC data better than conventionally used polynomial equations of temperature. Moreover, it yields the unique(exponent) value of 2 when the CMC is expressed in a power-law form. This finding is quite significant, because it may point to the universality of the thermal behavior of CMC. Hence, in this article, the nature of the equation ln $x_{CMC}$ = A + BT + C lnT + D/T is examined from a lattice-theory point of view through the Flory-Huggins model. It is found that a linear behavior of heat capacity change of micellization is responsible for the CMC equation of temperature.

Keywords

References

  1. Miller, D. D.; Magid, L. J.; Evans, D. F. J. Phys. Chem. 1990, 94, 5921 https://doi.org/10.1021/j100378a058
  2. Becher, P. Nonionic Surfactants; Schick, M. J., Ed.; Marcel Dekker: New York, 1967; Chapter 15
  3. Flockhart, B. D. J. Colloid Interface Sci. 1961, 16, 484 https://doi.org/10.1016/0095-8522(61)90026-5
  4. Stead, J. A.; Taylor, H. J. J. Colloid Interface Sci. 1969, 30, 482 https://doi.org/10.1016/0021-9797(69)90417-2
  5. Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2004, 235, 121 https://doi.org/10.1016/j.colsurfa.2003.12.019
  6. Kang, K.-H.; Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2001, 189, 113 https://doi.org/10.1016/S0927-7757(01)00577-5
  7. Lim, K.-H. Manuscript in Preparation, 2009a
  8. Muller, N. Langmuir 1993, 9, 96 https://doi.org/10.1021/la00025a022
  9. Kim, H.-U.; Lim, K.-H. Bull Korean Chem. Soc. 2003, 24, 1449 https://doi.org/10.5012/bkcs.2003.24.10.1449
  10. Lim, K.-H.; Kang, K.-H.; Lee, M. J. J. Kor. Ind. Eng. Chem. 2006, 17, 625
  11. Kang, K.-H.; Lim, K.-H. Kor. Chem. Eng. Res. 2008, 46, 824
  12. Lim, K.-H. Manuscript in Preparation, 2009b.
  13. Lim, K.-H. Statistical Thermodynamics; Hantee Media, Seoul, Korea, 2008
  14. Kim, H.-U. Ph. D. Dissertation, Chung-Ang University, Seoul, Korea, 2002
  15. La Mesa, C. J. Phys. Chem. 1990, 94, 323 https://doi.org/10.1021/j100364a054
  16. Stasiuk, E. N. B.; Schramm, L. L. J. Colloid Interface Sci. 1996, 324, 178
  17. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, $4^{th}$ ed.; Butterworth-Heinemann: Oxford, 1996
  18. La Mesa, C.; Ranieri, Z. A.; Terenzi, M. J. Surface Sci. Tech. 1990, 6, 151
  19. Shaw, D. J. Introduction to Colloid and Surface Chemistry, $4^{th}$ ed.; Butterworth: 1991; p 91
  20. Evans, D. F.; Wennerstrom, H. The Colloidal Domain, where Physics, Chemistry, Biology, and Technology Meet; VCH: 1994
  21. Moroi, Y. Micelles, Theoretical and Applied Aspects; Plenum, 1992
  22. Tanford, C. Hydrophobic Effects; John Wiley and Sons. Inc: 1980
  23. Poland, D. C.; Schraga, H. A. J. Phys. Chem. 1965, 69, 2431 https://doi.org/10.1021/j100891a055
  24. Nemethy, G.; Schraga, H. A. J. Phys. Chem. 1962, 66, 1773 https://doi.org/10.1021/j100816a004
  25. Koningsveld, R. Br. Polym. J. 1975, 7, 435 https://doi.org/10.1002/pi.4980070610
  26. Koningsveld, R. Adv. Colloid Interface Sci. 1968, 2, 151 https://doi.org/10.1016/0001-8686(68)85003-1
  27. Kresheck, G. C.; Hargraves, W. A. J. Colloid Interface Sci. 1974, 48, 481 https://doi.org/10.1016/0021-9797(74)90193-3
  28. Tomasic, V.; Chittofrati, A.; Kallay, N. Colloid Surf. A 1995, 104, 95 https://doi.org/10.1016/0927-7757(95)03260-K
  29. Chen, L.-J.; Sheu, Y.-H.; Li, P.-J. J. Phys. Chem. 2004, 108, 19096 https://doi.org/10.1021/jp045486a

Cited by

  1. Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants vol.54, pp.5, 2017, https://doi.org/10.3139/113.110514