References
- Baltus, R. E.; Counce, R. M.; Culbertson, B. H.; Luo, H.; DePaoli, D. W.; Dai, S.; Duckworth, D. C. Sep. Sci. Techol. 2005, 40, 525 https://doi.org/10.1081/SS-200042513
- Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X. Chem. Eur. J. 2006, 12, 4021 https://doi.org/10.1002/chem.200501015
- Jacquemin, J.; Costa Gomes, M. F.; Husson, P.; Majer, V. J. Chem. Thermodyn. 2006, 38, 490 https://doi.org/10.1016/j.jct.2005.07.002
- Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. Acc. Chem. Res. 2007, 40, 1208 https://doi.org/10.1021/ar7001649
- Pennline, H. W.; Luebke, D. R.; Jones, K. L.; Myers, C. R.; Morsi, B. I.; Heintz, Y. J.; Ilconich, J. B. Fuel Proc. Technol. 2008, 89, 897 https://doi.org/10.1016/j.fuproc.2008.02.002
- Costantini, M.; Toussaint, V. A.; Shariati, A.; Peters, C. J.; Kikic, I. J. Chem. Eng. Data 2005, 50, 52 https://doi.org/10.1021/je049870c
- Kim, Y. S.; Choi, W. Y.; Jang, J. H.; Yoo, K. P.; Lee, C. S. Fluid Phase Equilib. 2005, 228-229, 439 https://doi.org/10.1016/j.fluid.2004.09.006
- Perez Salado Kamps, A.; Tuma, D.; Xia, J.; Maurer, G. J. Chem. Eng. Data 2003, 48, 746 https://doi.org/10.1021/je034023f
- Kumelan, J.; Perez Salado Kamps, A.; Tuma, D.; Maurer, G. J. Chem. Thermodyn. 2006, 38, 1396
- Jacquemin, J.; Husson, P.; Majer, V.; Costa Gomes, M. F. J. Solution Chem. 2007, 36, 967 https://doi.org/10.1007/s10953-007-9159-9
- Baltus, R. E.; Culbertson, B. H.; Dai, S.; Luo, H.; DePaoli, D. W. J. Phys. Chem. B 2004, 108, 721 https://doi.org/10.1021/jp036051a
- Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126, 5300 https://doi.org/10.1021/ja039615x
- Kazarian, S. G.; Briscoe, B. J.; Welton, T. Chem. Commun. 2000, 20, 2047
- Deschamps, J.; Costa Gomes, M. F.; Padua, A. A. H. Chem-PhysChem 2004, 5, 1049
- Blanchard, L. A.; Gu, Z.; Brennecke, J. F. J. Phys. Chem. B 2001, 105, 2437 https://doi.org/10.1021/jp003309d
- Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. J. Phys. Chem. B 2007, 111, 9001 https://doi.org/10.1021/jp071897q
- Bara, J. E.; Gabriel, C. J.; Lessmann, S.; Carlisle, T. K.; Finotello, A.; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res. 2007, 46, 5380 https://doi.org/10.1021/ie070437g
- Shiflett, M. B.; Kasprzak, D. J.; Junk, C. P.; Yokozeki, A. J. Chem. Thermodyn. 2008, 40, 25 https://doi.org/10.1016/j.jct.2007.06.003
- Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X. Chem. Eur. J. 2006, 12, 4021 https://doi.org/10.1002/chem.200501015
- Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Green Chem. 2003, 5, 361 https://doi.org/10.1039/b304400a
- Burrell, A. K.; Del Sesto, R. E.; Baker, S. N.; McCleskey, T. M.; Baker, G. A. Green Chem. 2007, 9, 449 https://doi.org/10.1039/b615950h
- Seddon, K. R.; Stark, A.; Torres, M. J. Pure Appl. Chem. 2000, 72, 2275 https://doi.org/10.1351/pac200072122275
- Kuhlmann, E.; Himmler, S.; Giebelhaus, H.; Wasserscheid, P. Green Chem. 2007, 9, 233 https://doi.org/10.1039/b611974c
- Gainar, I.; Bala, D. Analele Universitatii Bucuresti-Chimie XIV 2005, 279
- Sinor, J. E.; Schindler, D. L.; Kurata, F. AIChE Journal 1966, 12, 353 https://doi.org/10.1002/aic.690120227
- Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A. J.; Zhou, Y. Green Chem. 2003, 5, 143 https://doi.org/10.1039/b209734f
- Camper, D.; Scovazzo, P.; Koval, C.; Noble, R. Ind. Eng. Chem. Res. 2004, 43, 3049 https://doi.org/10.1021/ie034097k
- Dymond, J. H.; Marsh, K. N.; Wilhoit, R. C.; Wong, K. C. The Virial Coefficients f Pure Gases and Mixture; Springer-Verlag Berlin Heidelberg: 2002; pp 28-30
- Span, R.; Wagner, W. J. Phys. Chem. Ref. Data 1996, 25, 1509 https://doi.org/10.1063/1.555991
- Dzyuba, S. V.; Bartsch, R. A. ChemPhysChem 2002, 3, 161 https://doi.org/10.1002/1439-7641(20020215)3:2<161::AID-CPHC161>3.0.CO;2-3
- Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, Md. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103 https://doi.org/10.1021/jp044626d
- Krause, D.; Benson, B. B. J. Solution Chem. 1989, 18, 823 https://doi.org/10.1007/BF00685062
- Chen, Y.; Zhang, S.; Yuan, X.; Zhang, Y.; Zhang, X.; Dai, W.; Mori, R. Thermochim. Acta 2006, 441, 42 https://doi.org/10.1016/j.tca.2005.11.023
- Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F. J. Phys. Chem. B 2004, 108, 20355 https://doi.org/10.1021/jp046895+
- Jacquemin, J.; Husson, P.; Majer, V.; Padua, A. A. H.; Costa Gomes, M. F. Green Chem. 2008, 10, 944 https://doi.org/10.1039/b802761g
Cited by
- Study on Hydroxylammonium-Based Ionic Liquids. I. Characterization vol.115, pp.43, 2011, https://doi.org/10.1021/jp2062089
- Ionic liquid-assisted carboxylation of amines by CO2: a mechanistic consideration vol.13, pp.13, 2011, https://doi.org/10.1039/c0cp02482a
- Prediction of binding bond energy between phosphorous-based ionic liquids and CO2. Assessment of the CO2–anion interactions vol.18, pp.1-2, 2012, https://doi.org/10.1007/s11581-011-0606-7
- Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/473584
- Water Effect on Acid-Gas Capture Using Choline Lactate: A DFT Insight beyond Molecule–Molecule Pair Simulations vol.119, pp.17, 2015, https://doi.org/10.1021/acs.jpcb.5b00184
- Solubilities of Carbon Dioxide and Oxygen in the Ionic Liquids Methyl Trioctyl Ammonium Bis(trifluoromethylsulfonyl)imide, 1-Butyl-3-Methyl Imidazolium Bis(trifluoromethylsulfonyl)imide, and 1-Butyl-3-Methyl Imidazolium Methyl Sulfate vol.119, pp.4, 2015, https://doi.org/10.1021/jp5061057
- adsorption and diffusivity vol.38, pp.4, 2015, https://doi.org/10.1002/pc.23635
- Composite blending of ionic liquid-poly(ether sulfone) polymeric membranes: Green materials with potential for carbon dioxide/methane separation vol.133, pp.39, 2016, https://doi.org/10.1002/app.43999
- Temperature effects on the viscosity and the wavelength-dependent refractive index of imidazolium-based ionic liquids with a phosphorus-containing anion vol.19, pp.12, 2017, https://doi.org/10.1039/C6CP08910K
- Electroreduction and solubility of CO2 in methoxy- and nitrile-functionalized imidazolium (FAP) ionic liquids vol.47, pp.11, 2017, https://doi.org/10.1007/s10800-017-1117-7
- Ionic-Liquid-Derived, Water-Soluble Ionic Cellulose vol.18, pp.29, 2012, https://doi.org/10.1002/chem.201200982
- Supported Ionic Liquid Membranes for Separation of Lignin Aqueous Solutions vol.6, pp.9, 2018, https://doi.org/10.3390/pr6090143
- Ionic cellulose-stabilized gold nanoparticles and their application in the catalytic reduction of 4-nitrophenol vol.8, pp.4, 2018, https://doi.org/10.1039/C7RA11393E
- CO2 Solubilities in Amide-based Brønsted Acidic Ionic Liquids vol.31, pp.1, 2009, https://doi.org/10.5012/bkcs.2010.31.01.146
- Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes vol.12, pp.8, 2010, https://doi.org/10.1039/b915989d
- Highly efficient metal-free membranes for the separation of acetylene/olefin mixtures: Pyrrolidinium-based ionic liquids as acetylene transport carriers vol.354, pp.1, 2009, https://doi.org/10.1016/j.memsci.2010.02.062
- Cu(I)-containing room temperature ionic liquids as selective and reversible absorbents for propyne vol.12, pp.42, 2009, https://doi.org/10.1039/c004140h
- Solubility of Carbon Dioxide in Strongly Basic Ionic Liquid vol.31, pp.10, 2009, https://doi.org/10.5012/bkcs.2010.31.10.2797
- An Optimization Study of Carbon Dioxide Absorption into the Aqueous Solution of Monoethanolamine and Tetrabutylphosphonium Methanesulfonate Hybrid Solvent Using RSM-CCD Methodology vol.9, pp.7, 2009, https://doi.org/10.3390/pr9071186