DOI QR코드

DOI QR Code

Fluorine-Free Imidazolium-Based Ionic Liquids with a Phosphorous-Containing Anion as Potential CO2 Absorbents

  • Palgunadi, Jelliarko (Department of Chemistry and Research Institute of Basic Science, Kyung Hee University) ;
  • Kang, Je-Eun (Department of Chemistry and Research Institute of Basic Science, Kyung Hee University) ;
  • Cheong, Min-Serk (Department of Chemistry and Research Institute of Basic Science, Kyung Hee University) ;
  • Kim, Hong-Gon (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Joo (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hoon-Sik (Department of Chemistry and Research Institute of Basic Science, Kyung Hee University)
  • Published : 2009.08.20

Abstract

Solubilities of carbon dioxide (C$O_2$) in a series of fluorine-free room temperature ionic liquids (RTILs), dialkylimidazolium dialkylphosphates and dialkylimidazolium alkylphosphites, were measured at 313∼333 K and pressures up to 5 MPa. Henry’s law coefficients as the solubility parameter of C$O_2$ in RTILs were derived from the isotherm of fugacity versus C$O_2$ mole fraction. The C$O_2$ solubility in a phosphorus-containing RTIL was found to increase with the increasing molar volume of the RTIL. In general, dialkylimidazolium dialkylphosphate exhibited higher absorption capacity than dialkylimidazolium alkylphosphite as long as the RTILs possess an identical cation. Among RTILs tested, 1-butyl-3-methylimidazolium dibutylphosphate [BMIM][B$u_2PO_4$] and 1-butyl-3-methylimidazolium butylphosphite [BMIM][BuHP$O_3$] exhibited similar Henry’s law coefficients to 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ([BMIM][T$f_2$N]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][B$F_4$]), respectively. The Krichevsky-Kasarnovsky equation was employed to derive the C$O_2$ solubility parameter (Henry’s law coefficient) from the solubility data measured at elevated pressures.

Keywords

References

  1. Baltus, R. E.; Counce, R. M.; Culbertson, B. H.; Luo, H.; DePaoli, D. W.; Dai, S.; Duckworth, D. C. Sep. Sci. Techol. 2005, 40, 525 https://doi.org/10.1081/SS-200042513
  2. Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X. Chem. Eur. J. 2006, 12, 4021 https://doi.org/10.1002/chem.200501015
  3. Jacquemin, J.; Costa Gomes, M. F.; Husson, P.; Majer, V. J. Chem. Thermodyn. 2006, 38, 490 https://doi.org/10.1016/j.jct.2005.07.002
  4. Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. Acc. Chem. Res. 2007, 40, 1208 https://doi.org/10.1021/ar7001649
  5. Pennline, H. W.; Luebke, D. R.; Jones, K. L.; Myers, C. R.; Morsi, B. I.; Heintz, Y. J.; Ilconich, J. B. Fuel Proc. Technol. 2008, 89, 897 https://doi.org/10.1016/j.fuproc.2008.02.002
  6. Costantini, M.; Toussaint, V. A.; Shariati, A.; Peters, C. J.; Kikic, I. J. Chem. Eng. Data 2005, 50, 52 https://doi.org/10.1021/je049870c
  7. Kim, Y. S.; Choi, W. Y.; Jang, J. H.; Yoo, K. P.; Lee, C. S. Fluid Phase Equilib. 2005, 228-229, 439 https://doi.org/10.1016/j.fluid.2004.09.006
  8. Perez Salado Kamps, A.; Tuma, D.; Xia, J.; Maurer, G. J. Chem. Eng. Data 2003, 48, 746 https://doi.org/10.1021/je034023f
  9. Kumelan, J.; Perez Salado Kamps, A.; Tuma, D.; Maurer, G. J. Chem. Thermodyn. 2006, 38, 1396
  10. Jacquemin, J.; Husson, P.; Majer, V.; Costa Gomes, M. F. J. Solution Chem. 2007, 36, 967 https://doi.org/10.1007/s10953-007-9159-9
  11. Baltus, R. E.; Culbertson, B. H.; Dai, S.; Luo, H.; DePaoli, D. W. J. Phys. Chem. B 2004, 108, 721 https://doi.org/10.1021/jp036051a
  12. Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126, 5300 https://doi.org/10.1021/ja039615x
  13. Kazarian, S. G.; Briscoe, B. J.; Welton, T. Chem. Commun. 2000, 20, 2047
  14. Deschamps, J.; Costa Gomes, M. F.; Padua, A. A. H. Chem-PhysChem 2004, 5, 1049
  15. Blanchard, L. A.; Gu, Z.; Brennecke, J. F. J. Phys. Chem. B 2001, 105, 2437 https://doi.org/10.1021/jp003309d
  16. Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. J. Phys. Chem. B 2007, 111, 9001 https://doi.org/10.1021/jp071897q
  17. Bara, J. E.; Gabriel, C. J.; Lessmann, S.; Carlisle, T. K.; Finotello, A.; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res. 2007, 46, 5380 https://doi.org/10.1021/ie070437g
  18. Shiflett, M. B.; Kasprzak, D. J.; Junk, C. P.; Yokozeki, A. J. Chem. Thermodyn. 2008, 40, 25 https://doi.org/10.1016/j.jct.2007.06.003
  19. Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X. Chem. Eur. J. 2006, 12, 4021 https://doi.org/10.1002/chem.200501015
  20. Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Green Chem. 2003, 5, 361 https://doi.org/10.1039/b304400a
  21. Burrell, A. K.; Del Sesto, R. E.; Baker, S. N.; McCleskey, T. M.; Baker, G. A. Green Chem. 2007, 9, 449 https://doi.org/10.1039/b615950h
  22. Seddon, K. R.; Stark, A.; Torres, M. J. Pure Appl. Chem. 2000, 72, 2275 https://doi.org/10.1351/pac200072122275
  23. Kuhlmann, E.; Himmler, S.; Giebelhaus, H.; Wasserscheid, P. Green Chem. 2007, 9, 233 https://doi.org/10.1039/b611974c
  24. Gainar, I.; Bala, D. Analele Universitatii Bucuresti-Chimie XIV 2005, 279
  25. Sinor, J. E.; Schindler, D. L.; Kurata, F. AIChE Journal 1966, 12, 353 https://doi.org/10.1002/aic.690120227
  26. Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A. J.; Zhou, Y. Green Chem. 2003, 5, 143 https://doi.org/10.1039/b209734f
  27. Camper, D.; Scovazzo, P.; Koval, C.; Noble, R. Ind. Eng. Chem. Res. 2004, 43, 3049 https://doi.org/10.1021/ie034097k
  28. Dymond, J. H.; Marsh, K. N.; Wilhoit, R. C.; Wong, K. C. The Virial Coefficients f Pure Gases and Mixture; Springer-Verlag Berlin Heidelberg: 2002; pp 28-30
  29. Span, R.; Wagner, W. J. Phys. Chem. Ref. Data 1996, 25, 1509 https://doi.org/10.1063/1.555991
  30. Dzyuba, S. V.; Bartsch, R. A. ChemPhysChem 2002, 3, 161 https://doi.org/10.1002/1439-7641(20020215)3:2<161::AID-CPHC161>3.0.CO;2-3
  31. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, Md. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103 https://doi.org/10.1021/jp044626d
  32. Krause, D.; Benson, B. B. J. Solution Chem. 1989, 18, 823 https://doi.org/10.1007/BF00685062
  33. Chen, Y.; Zhang, S.; Yuan, X.; Zhang, Y.; Zhang, X.; Dai, W.; Mori, R. Thermochim. Acta 2006, 441, 42 https://doi.org/10.1016/j.tca.2005.11.023
  34. Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F. J. Phys. Chem. B 2004, 108, 20355 https://doi.org/10.1021/jp046895+
  35. Jacquemin, J.; Husson, P.; Majer, V.; Padua, A. A. H.; Costa Gomes, M. F. Green Chem. 2008, 10, 944 https://doi.org/10.1039/b802761g

Cited by

  1. Study on Hydroxylammonium-Based Ionic Liquids. I. Characterization vol.115, pp.43, 2011, https://doi.org/10.1021/jp2062089
  2. Ionic liquid-assisted carboxylation of amines by CO2: a mechanistic consideration vol.13, pp.13, 2011, https://doi.org/10.1039/c0cp02482a
  3. Prediction of binding bond energy between phosphorous-based ionic liquids and CO2. Assessment of the CO2–anion interactions vol.18, pp.1-2, 2012, https://doi.org/10.1007/s11581-011-0606-7
  4. Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/473584
  5. Water Effect on Acid-Gas Capture Using Choline Lactate: A DFT Insight beyond Molecule–Molecule Pair Simulations vol.119, pp.17, 2015, https://doi.org/10.1021/acs.jpcb.5b00184
  6. Solubilities of Carbon Dioxide and Oxygen in the Ionic Liquids Methyl Trioctyl Ammonium Bis(trifluoromethylsulfonyl)imide, 1-Butyl-3-Methyl Imidazolium Bis(trifluoromethylsulfonyl)imide, and 1-Butyl-3-Methyl Imidazolium Methyl Sulfate vol.119, pp.4, 2015, https://doi.org/10.1021/jp5061057
  7. adsorption and diffusivity vol.38, pp.4, 2015, https://doi.org/10.1002/pc.23635
  8. Composite blending of ionic liquid-poly(ether sulfone) polymeric membranes: Green materials with potential for carbon dioxide/methane separation vol.133, pp.39, 2016, https://doi.org/10.1002/app.43999
  9. Temperature effects on the viscosity and the wavelength-dependent refractive index of imidazolium-based ionic liquids with a phosphorus-containing anion vol.19, pp.12, 2017, https://doi.org/10.1039/C6CP08910K
  10. Electroreduction and solubility of CO2 in methoxy- and nitrile-functionalized imidazolium (FAP) ionic liquids vol.47, pp.11, 2017, https://doi.org/10.1007/s10800-017-1117-7
  11. Ionic-Liquid-Derived, Water-Soluble Ionic Cellulose vol.18, pp.29, 2012, https://doi.org/10.1002/chem.201200982
  12. Supported Ionic Liquid Membranes for Separation of Lignin Aqueous Solutions vol.6, pp.9, 2018, https://doi.org/10.3390/pr6090143
  13. Ionic cellulose-stabilized gold nanoparticles and their application in the catalytic reduction of 4-nitrophenol vol.8, pp.4, 2018, https://doi.org/10.1039/C7RA11393E
  14. CO2 Solubilities in Amide-based Brønsted Acidic Ionic Liquids vol.31, pp.1, 2009, https://doi.org/10.5012/bkcs.2010.31.01.146
  15. Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes vol.12, pp.8, 2010, https://doi.org/10.1039/b915989d
  16. Highly efficient metal-free membranes for the separation of acetylene/olefin mixtures: Pyrrolidinium-based ionic liquids as acetylene transport carriers vol.354, pp.1, 2009, https://doi.org/10.1016/j.memsci.2010.02.062
  17. Cu(I)-containing room temperature ionic liquids as selective and reversible absorbents for propyne vol.12, pp.42, 2009, https://doi.org/10.1039/c004140h
  18. Solubility of Carbon Dioxide in Strongly Basic Ionic Liquid vol.31, pp.10, 2009, https://doi.org/10.5012/bkcs.2010.31.10.2797
  19. An Optimization Study of Carbon Dioxide Absorption into the Aqueous Solution of Monoethanolamine and Tetrabutylphosphonium Methanesulfonate Hybrid Solvent Using RSM-CCD Methodology vol.9, pp.7, 2009, https://doi.org/10.3390/pr9071186