DOI QR코드

DOI QR Code

The Characterization of Borohydride-Stabilized Nanosilvers in Laponite Sol Using 1H NMR: Its Ligand Exchange Reactions with MUA and TOP

  • Seo, Jae-Seok (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University) ;
  • Son, Dong-Min (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University) ;
  • Lee, Han-Na (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University) ;
  • Kim, Jee-Kwang (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University) ;
  • Kim, You-Hyuk (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University)
  • Published : 2009.11.20

Abstract

In borohydride-protected nanosilvers in laponite sol, the silver particles aggregate to form short chains and a dumbbell shape. The $^{1}H$ NMR measurements in this study represent, to our knowledge, the first observation of proton resonances of borohydride-protected nanosilvers in aqueous solution. Borohydride on nanosilver can be exchanged with 11-mercaptoundecanoic acid (MUA) or trioctylphosphine (TOP). Transmission electron microscopy and UV-Vis spectroscopy data show that the number of aggregated silver nanoparticles decreases upon addition of aforementioned ligands due to the formation of silver MPCs (monolayer-protected clusters). Adsorption of MUA or TOP on nanosilver is confirmed through the observation of broad proton resonances of MPCs in $^{1}H$ NMR spectra.

Keywords

References

  1. Fendler, J. H.; Meldrum F. C. Adv. Mater. 1995, 7, 607 https://doi.org/10.1002/adma.19950070703
  2. Dirix, Y.; Bastiaanse, C.; Caseri, W.; Smith, P. Adv. Mater. 1999, 11, 223 https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<223::AID-ADMA223>3.0.CO;2-J
  3. Haneda, M.; Kintaichi, Y.; Inaba, M. Catal. Today 1998, 42, 127 https://doi.org/10.1016/S0920-5861(98)00083-2
  4. Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Science 2001, 293, 1455 https://doi.org/10.1126/science.1062340
  5. Yonezawa, T.; Onoue, S.; Kimizuka, N. Langmuir 2001, 17, 2291 https://doi.org/10.1021/la001427m
  6. Xu, W.; Liao, Y.; Akins, D. L. J. Phys. Chem. B 2002, 106, 11127 https://doi.org/10.1021/jp025651r
  7. Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nicholas, R. J. Nature 2000, 408, 67 https://doi.org/10.1038/35040518
  8. Kelly, L. L.; Coronado, E.; Zhao. L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668 https://doi.org/10.1021/jp026731y
  9. Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 181 https://doi.org/10.1021/ar000110a
  10. Mulvaney, P. Langmuir 1996, 12, 788 https://doi.org/10.1021/la9502711
  11. Tan, Y.; Li, Y.; Zhu, D. J. Colloid Interface Sci. 2003, 258, 244 https://doi.org/10.1016/S0021-9797(02)00151-0
  12. Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648 https://doi.org/10.1021/ja047846d
  13. Van Hyning, D. L.; Zukoski, C. F. Langmuir 1998, 14, 7034 https://doi.org/10.1021/la980325h
  14. Van Hyning, D. L.; Klemperer, W. G.; Zukoski, C. F. Langmuir 2001, 17, 3120 https://doi.org/10.1021/la000855p
  15. Van Hyning, D. L.; Klemperer, W. G.; Zukoski, C. F. Langmuir 2001, 17, 3128 https://doi.org/10.1021/la000856h
  16. Li, X.; Zhang, J.; Xu, W.; Jia, H.; Wang, X.; Yang, B.; Zhao, B.; Li, B.; Ozaki, Y. Langmuir 2003, 19, 4285 https://doi.org/10.1021/la0341815
  17. Maillard, M.; Giorgio, S.; Pileni, M.-P. J. Phys. Chem. B 2003, 107, 2466 https://doi.org/10.1021/jp022357q
  18. Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Chem. Mater. 2002, 14, 4736 https://doi.org/10.1021/cm020587b
  19. Nariaki, A.; Kanjiro, T.; Kunio, E. Langmuir 1998, 14, 4945 https://doi.org/10.1021/la980370p
  20. Patakfalvi, R.; D$\'{e}$k$\'{a}$ny, I. Appl. Clay Sci. 2004, 25, 149 https://doi.org/10.1016/j.clay.2003.08.007
  21. Liu, J.; Lee, J.-B.; Kim, D.-H.; Kim, Y. Colloids Surf. A 2007, 302, 276 https://doi.org/10.1016/j.colsurfa.2007.02.040
  22. Avery, R. G.; Ramsay, J. D. F. J. Colloid Interface Sci. 1986, 109, 448 https://doi.org/10.1016/0021-9797(86)90322-X
  23. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078 https://doi.org/10.1126/science.277.5329.1078
  24. Moores, A.; Goettmann, F. New J. Chem. 2006, 30, 1121 https://doi.org/10.1039/b604038c
  25. Liu, Y.; Liu, C.-Y.; Chen, L.-B. ; Zhang, Z.-Y. J. Collid Interface Sci. 2003, 257, 188 https://doi.org/10.1016/S0021-9797(02)00027-9
  26. Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073 https://doi.org/10.1021/jp990183f
  27. Yang, Y.; Shi, J.; Tanaka, T.; Nogami, M. Langmuir 2007, 23, 12042 https://doi.org/10.1021/la701610s
  28. He, S.; Yao, J.; Jiang, P.; Shi, D.; Zhang, H.; Xie, S.; Pang, S.; Gao, H. Langmuir 2001, 17, 1571 https://doi.org/10.1021/la001239w
  29. Tzhayik, O.; Sawant, P.; Efrima, S.; Kovalev, E.; Klug, J. T. Langmuir 2002, 18, 3364 https://doi.org/10.1021/la015653n
  30. Shon, Y.-S.; Cutler, E. Langmuir 2004, 20, 6626 https://doi.org/10.1021/la049417z
  31. Kohlmann, O.; Steinmetz, W. E.; Mao, X.-A.; Wuelfing, W. P.; Templeton, A. C.; Murray, R. W.; Johnson, C. S. J. Phys. Chem. B 2001, 105, 8801 https://doi.org/10.1021/jp011123o
  32. Jahncke, M.; Meister, G.; Rheinwald, G.; Stoeckli-Evans, H.; Sss-Fink, G. Organometallics 1997, 16, 1137 https://doi.org/10.1021/om960840f
  33. Huang, T.; Nallathamby, P. D.; Xu, X.-H. N. J. Am. Chem. Soc. 2008, 130, 17095 https://doi.org/10.1021/ja8068853
  34. Hasan, M.; Bethell, D.; Brust, M. J. Am. Chem. Soc. 2002, 124, 1132 https://doi.org/10.1021/ja0120577
  35. Pal, T.; Sau, T. K.; Jana, N. R. Langmuir 1997, 13, 1481 https://doi.org/10.1021/la960834o

Cited by

  1. clusters: one-step synthesis and electrochemical detection of glucose vol.3, pp.16, 2015, https://doi.org/10.1039/C5TC00246J
  2. = bis(diphenylphosphino)methane) vol.7, pp.43, 2015, https://doi.org/10.1039/C5NR05690J
  3. H-NMR spectra vol.4, pp.12, 2016, https://doi.org/10.1039/C5TB02443A
  4. An easy synthesis of autofluorescent alloyed silver-gold nanoparticles vol.2, pp.45, 2014, https://doi.org/10.1039/c4tb01010h
  5. Preparation and characterisation of silver nanoparticle coated on cellulose paper: evaluation of their potential as antibacterial water filter vol.11, pp.17, 2016, https://doi.org/10.1080/17458080.2016.1209790
  6. Solution NMR Spectroscopy with Isotope-Labeled Cysteine (13C and 15N) Reveals the Surface Structure of L-Cysteine-Coated Ultrasmall Gold Nanoparticles (1.8 nm) vol.35, pp.3, 2019, https://doi.org/10.1021/acs.langmuir.8b03840