DOI QR코드

DOI QR Code

Kinetic Studies of the Solvolyses of 4-Nitrophenyl Phenyl Thiophosphorochloridate

  • Koh, Han-Joong (Department of Science Education, Jeonju National University of Education) ;
  • Kang, Suk-Jin (Department of Science Education, Jeonju National University of Education)
  • Published : 2009.10.20

Abstract

Rates of solvolyses of 4-nitrophenyl phenyl thiophosphorochloridate (4-N$O_2$PhOP(S)(Cl)OPh, $\underline{1}$) in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, acetone, and 2,2,2-trifluroethanol (TFE) are reported. Thermodynamic parameters were determined at several temperatures in three representative solvents. The extended Grunwald-Winstein equation was applied to 29 solvents and the correlation coefficient (R) showed 0.959. The sensitivities (l = 1.37 and m = 0.62) are similar to those obtained for diphenyl thiophosphorochloridate (($PhO)_2$PSCl, $\underline{2}$), diphenyl phosphorochloridate (($PhO)_2$POCl, $\underline{3}$), diphenyl phosphinic chloride ($Ph_2$POCl, $\underline{4}$), and diphenyl thiophosphinic chloride ($Ph_2$PSCl, $\underline{5}$). The solvolytic reaction mechanism of 4-nitrophenyl phenyl thiophosphorochloridate ($\underline{1}$) is suggested to be proceeded a $S_N$2 process as previously reported result. The activation enthalpies are shown as slightly low as ${\Delta}H^{\neq}\;=\;9.62\;to\;11.9\;kcal{\cdot}mol^{-1}$ and the activation entropies are shown as slightly high negative value as ${\Delta}S^{\neq}\;=\;-34.1\;to\;-44.9\;cal{\cdot}mol^{-1}{\cdot}K^{-1}$ compared to the expected $S_N$2 reaction mechanism. Kinetic solvent isotope effects are accord with a typical $S_N$2 mechanism as shown in the range of 2.41 in MeOH/ MeOD and 2.57 in $H_2O/D_2O$ solvent mixtures.

Keywords

References

  1. Page, M.; Walliams, A. Organic and Bio-Organic Mechanisms; Longman: Harlow, 1997; Chapter 7-8.
  2. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 6.
  3. Hudson, R. F. Structure and Mechanism in Organophosphorus Chemistry; Academic Press: New York, 1965.
  4. Admiral, S. J.; Schneider, B.; Meyer, P.; Janin, J.; Veron, M,; Deville-Bonne, D.; Herschlag, D. Biochemistry 1999, 38, 4701. https://doi.org/10.1021/bi9827565
  5. Mol, C. D.; Izumi, T.; Mitra, S.; Tainer, J. A. Nature 2000, 403, 451. https://doi.org/10.1038/35000249
  6. Hosfield, D. J.; Guan, Y.; Haas, B. J.; Cunningham, R. P.; Tainer, J. A. Cell 1999, 98, 397. https://doi.org/10.1016/S0092-8674(00)81968-6
  7. Mol, C. D.; Hosfield, D. J.; Tainer, J. A. Mutat. Res. 2000, 460, 211. https://doi.org/10.1016/S0921-8777(00)00028-8
  8. Chapados, B. R.; Chai, Q.; Hosfield, D. J.; Qiu, J.; Shen, B.; Tainer, J. A. Mol. Biol. 2001, 307, 541. https://doi.org/10.1006/jmbi.2001.4494
  9. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591. https://doi.org/10.1021/ja00336a046
  10. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597. https://doi.org/10.1021/ja00336a047
  11. Kirby, A. J.; Varroglis, A. G. J. Am. Chem. Soc. 1967, 89, 415. https://doi.org/10.1021/ja00978a044
  12. Friedman, J. M.; Freeman, S.; Knowles, J. R. J. Am. Chem. Soc. 1988, 110, 1268. https://doi.org/10.1021/ja00212a040
  13. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890. https://doi.org/10.1021/ja00214a037
  14. Ba-Saif, S. A.; Waring, M. A.; Williams, A. J. Am. Chem. Soc. 1990, 112, 8115. https://doi.org/10.1021/ja00178a040
  15. Hengge, A. C.; Edens, W. A.; Elsing, H. J. Am. Chem. Soc. 1994, 116, 5045. https://doi.org/10.1021/ja00091a003
  16. Hoff, R. H.; Hengge, A. C. J. Org. Chem. 1998, 63, 6680. https://doi.org/10.1021/jo981160k
  17. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  18. Hoque, Md. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B.-S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  19. Hoque, Md. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  20. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846 https://doi.org/10.1021/ja01182a117
  21. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  22. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1993, 174.
  23. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  24. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 296.
  25. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700.
  26. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  27. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., ed.; JAI Press: Greenwich, CT, 1996; Vol. 1, pp 81-115.
  28. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 1721.
  29. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399 https://doi.org/10.1021/jo020467n
  30. Kevill, D. N.; Carver, J. S. Org. Biomol. Chem. 2004, 2, 2040. https://doi.org/10.1039/b402093f
  31. Kevill, D. N.; Park, B. C.; Park, K. H.; D'Souza, M. J.; Yaakoubd, L.; Mlynarski, S. L.; Kyong, J. B. Org. Biomol. Chem. 2006, 4, 1580. https://doi.org/10.1039/b518129a
  32. Bentley, T. W.; Ebdon, D.; Llewellyn, G.; Abduljaber, M. H.; Miller, B.; Kevill, D. N. J. Chem. Soc. Dalton Trans. 1997, 3819.
  33. Kevill, D. N.; Koh, H. J. Manuscript in preparation.
  34. Kevill, D. N.; Koh, H. J. J. Phys. Org. Chem. 2007, 20, 88. https://doi.org/10.1002/poc.1124
  35. Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 29, 1927. https://doi.org/10.5012/bkcs.2008.29.10.1927
  36. Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2009, 30, 383. https://doi.org/10.5012/bkcs.2009.30.2.383
  37. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001, 14, 759. https://doi.org/10.1002/poc.425
  38. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  39. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  40. Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287. https://doi.org/10.1002/9780470171950.ch6
  41. Neimysheva, A. A.; Savchik, V.; Ermolaeva, M. V.; Knunyants, I. L. Bull. Acad. Sci. USSR Div. Chem. Sci. Eng Trans. 1968, 2104.
  42. Ketelaar, J. A. A.; Gresmann, H. R.; Koopmans, K. Recl. Trav. Chim. Pays-Bas 1952, 71, 1253. https://doi.org/10.1002/recl.19520711214
  43. Chlebowski, J. F.; Coleman, J. E. J. Biol. Chem. 1974, 247, 7192.
  44. Cook, R. D.; Farah, S.; Ghawi, L.; Itani, A.; Rahil, J. Can. J. Chem. 1986, 64, 1630. https://doi.org/10.1139/v86-269
  45. Bel'skii, V. E.; Bezzubova, N. N.; Akamsin, V. D.; Eliseenkov, V. N.; Rizpolozhenskii, N. I.; Puduvik, A. N. Dokl. Akad. Nauk. SSSR 1971, 197, 85; Eng Trans. p. 171. https://doi.org/10.1139/v86-269
  46. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703. https://doi.org/10.1021/ja0501565
  47. Douglas, K. T.; Williams, A. J. Chem. Soc. Perkin Trans. 2 1976, 515. https://doi.org/10.1021/ja0501565
  48. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823. https://doi.org/10.1021/jo070171n
  49. Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.; Shayban, F.; Tanielian, O. V. Can. J. Chem. 1986, 64, 213. https://doi.org/10.1021/jo070171n
  50. Lee, I.; Sung, D. D.; Uhm, T. S.; Ryu, Z. H. J. Chem. Soc., Perkin Trans. 2 1989, 1697. https://doi.org/10.1139/v86-037
  51. Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 2263.
  52. Halmann, M. Phosphorus Sulfur 1988, 40, 251. https://doi.org/10.1080/03086648808072922
  53. Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657. https://doi.org/10.1080/03086648808072922
  54. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.5012/bkcs.2007.28.4.657
  55. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo9714270
  56. Kevill, D. N.; D'Souza, M. J. Collect. Czech. Chem. Commun 1999, 64, 1790. https://doi.org/10.1021/jo005630y
  57. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753 https://doi.org/10.1135/cccc19991790
  58. Kevill, D. N.; D'Souza. M. J. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  59. Kyong, J. B.; Won, H. S.; Lee, Y. H.; Kevill, D. N. Bull. Korean Chem. Soc. 2005, 26, 661. https://doi.org/10.1002/poc.569
  60. Kevill, D. N.; Kim, C. B. J. Org. Chem. 2005, 70, 1490. https://doi.org/10.5012/bkcs.2005.26.4.661
  61. Kyong, J. B.; Kim, Y. G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662. https://doi.org/10.1021/jo048103d
  62. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019
  63. Kyong, J. B.; Ryu, S. H.; Kevill, D. N. Int. J. Mol. Sci. 2006, 7, 186. https://doi.org/10.1021/jo00301a019
  64. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044. https://doi.org/10.3390/i7070186
  65. Kyong, J. B.; Won, H. S.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.1021/jo0492259
  66. Koo, I. S.; Lee, I.; Oh, J. U.; Yang, K. Y.; Bentley, T. W. J. Phys. Org. Chem. 1993, 6, 223. https://doi.org/10.3390/i6010087
  67. Lee, I.; Koh, H. J.; Park, Y. S.; Lee, H. W. J. Chem. Soc. Perkin Trans. 2 1993, 1575 https://doi.org/10.1002/poc.610060405
  68. Koh, H. J.; Kang, S. J.; Kevill, D. N. Phosphorus, Sulfur, and Silicon 2008, 183, 364. https://doi.org/10.1080/10426500701734943