DOI QR코드

DOI QR Code

Silica Supported Ammonium Acetate: An Efficient and Recyclable Heterogeneous Catalyst for Knoevenagel Condensation between Adehydes or Ketones and Active Methylene Group in Liquid Phase

  • Gupta, Raman (Department of Engineering Chemistry, Modern Institute of Engineering and Technology (MIET)) ;
  • Gupta, Monika (Department of Chemistry, University of Jammu) ;
  • Paul, Satya (Department of Chemistry, University of Jammu) ;
  • Gupta, Rajive (Department of Chemistry, University of Jammu)
  • Published : 2009.10.20

Abstract

A simple and efficient method has been developed for Knoevenagel condensation between aldehydes or ketones and active methylene group by stirring in methylene chloride at 60 ${^{\circ}C}$ under heterogeneous conditions using silica supported ammonium acetate. The products are obtained in excellent yields and are in a state of high purity. The structures of the products were confirmed by IR, $^1H$ NMR and mass spectral data and comparison with authentic samples available commercially.

Keywords

References

  1. Knoevenagel, E. Chem. Ber. 1984, 27, 2345.
  2. Trost, B. M. Comprehensive Organic Synthesis; Pergamon Press: Oxford, 1991; vol. 2, p 133.
  3. Freeman, F. Chem. Rev. 1981, 80, 329. https://doi.org/10.1021/cr60326a004
  4. Tietze, L. F.; Saling, P. Synlett 1992, 281.
  5. Borah, H. N.; Deb, M. L.; Boruah R. C.; Bhuyan, P. J. Tetrahedron Lett. 2005, 46, 3391. https://doi.org/10.1016/j.tetlet.2005.03.091
  6. Tietze, L. F. Chem. Rev. 1996, 96, 115. https://doi.org/10.1021/cr950027e
  7. Fatiadi, A. J. Synthesis 1978, 165 and 241; and references cited therein.
  8. Japan Pharmaceutical References, First ed.; 1989-90; p 144.
  9. Abbott, T.; Johnson, J. Organic Synthesis Coll.; John Wiley and Sons: New York, 1941; Vol. I, p 440.
  10. Rong, L.; Li, X.; H, Li.; Wang, D. S.; Tu, S.; Zhuang, Q. Synth. Commun. 2006, 36, 2407. https://doi.org/10.1080/00397910600640289
  11. Dave, C. G.; Augustine, C. Indian J. Chem. 2000, 39B, 403.
  12. Liu, X.-W.; Jiang, H.; Gong, H. Chinese J. Org. Chem. 2007, 27, 131
  13. Abaee, M. S.; Mojtahedi, M. M.; Zahedi, M. M.; Khanalizadeh, G. Arkivoc 2006, xv, 48.
  14. Balalaie, S.; Nemati, N. Synth. Commun. 2000, 30, 869. https://doi.org/10.1080/00397910008087099
  15. Loupy, A.; Song, S. J.; Sohn, S. M.; Lee, Y. M.; Kon, T. W. J. Chem. Soc. Perkin Trans. 1 2001, 1220.
  16. Bandgar, B. P.; Uppalla, L. S.; Sadavarte, V. S. J. Res (S) 2002, 40.
  17. Kidwai, M.; Sapra, P.; Bhushan, K. R. J. Indian Chem. Soc. 2002, 79, 596.
  18. Shi, D. Q.; Wang, X. S.; Yao, C. S.; Mu, L. J. Chem. Res (S) 2002, 344.
  19. Bigi, F.; Conforti, M. L.; Maggi, R.; Piccinno, A.; Sartoni, G. Green Chem. 2000, 2, 101. https://doi.org/10.1039/b001246g
  20. Sebti, S.; Nazith, R.; Tahir, R.; Saber, A. Synth. Commun. 2001, 31, 993. https://doi.org/10.1081/SCC-100103527
  21. Peng, Y.; Song, G. Indian J. Chem. 2003, 42B, 924.
  22. Zuo, W. Z.; Hua, R.; Qiu, X. Synth. Commun. 2004, 34, 3219. https://doi.org/10.1081/SCC-200028628
  23. Reddy, K. R.; Rajgopal, K.; Maheshwari, C. U.; Lakshmikantam, M. New J. Chem. 2006, 30, 1549. https://doi.org/10.1039/b610355c
  24. Khan, F. A.; Dash, J.; Satapathy, R.; Upadhay, S. K. Tetrahedron Lett. 2004, 45, 3055. https://doi.org/10.1016/j.tetlet.2004.02.103
  25. Zhng, X.; Lai, E. M.; Aranda, R. M.; Yeung, K. L. Appl. Catal. A: Gen. 2004, 261, 109. https://doi.org/10.1016/j.apcata.2003.10.045
  26. Tamami, B.; Fadavi, A. Iranian Poly. J. 2006, 15, 331.
  27. Sebti, S.; Smahi, A.; Solhy, A. Tetrahedron Lett. 2002, 43, 1813. https://doi.org/10.1016/S0040-4039(02)00092-8
  28. Jin, T. S.; Zhang, J.-S.; Wang, A.-Q.; Li, T.-S. Synth. Commun. 2004, 34, 2611 https://doi.org/10.1081/SCC-200025621
  29. Oskooie, H. A.; Heravi, M. M.; Derikvand, F.; Khorasani, M. Synth. Commun. 2006, 36, 2819. https://doi.org/10.1080/00397910600770631
  30. Boullet, F. T.; Foucaud, A. Tetrahedron Lett. 1982, 23, 4927. https://doi.org/10.1016/S0040-4039(00)85749-4
  31. Li, Y.-Q.; Ye, H.-H. Chin. J. Org. Chem. 2002, 22, 678.
  32. Moal, H.; Carrie, R.; Focuad, A.; Bargain, M.; Sevellec, C. Bull. Soc. Chim. Fr. 1966, 1033.
  33. Carrie, B. Bull. Soc. Sci.1962, 37, 5.
  34. Nagaei, M.; Zasshi, N. K. 1968, 89, 958; Chem. Abstr. 1970, 67824.
  35. Jones, R. A. Y. J. Chem. Soc. Perkin Trans. 1972, 2, 34.

Cited by

  1. Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction vol.1, pp.2, 2011, https://doi.org/10.1021/cs1000625
  2. First Bovine Serum Albumin-Promoted Synthesis of Enones, Cinnamic Acids and Coumarins in Ionic Liquid: An Insight into the Role of Protein Impurities in Porcine Pancreas Lipase for Olefinic Bond Formation vol.353, pp.6, 2011, https://doi.org/10.1002/adsc.201000870
  3. Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst vol.2, pp.3, 2012, https://doi.org/10.1039/C1CY00386K
  4. P2O5/SiO2 as an efficient heterogeneous catalyst for the synthesis of heterocyclic alkene derivatives under thermal solvent-free conditions vol.3, pp.8, 2013, https://doi.org/10.1039/c3cy00095h
  5. Catalyst Promoted Synthesis, Computational and Enzyme Inhibition Studies of Coumarin Esters vol.144, pp.12, 2014, https://doi.org/10.1007/s10562-014-1381-7
  6. Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties vol.38, pp.6, 2014, https://doi.org/10.1039/c4nj00053f
  7. promoted solvent-free, green and sustainable synthesis of bioactive 1-substituted-1H-tetrazole analogues vol.39, pp.3, 2015, https://doi.org/10.1039/C4NJ02079K
  8. Preparation of acid–base bifunctional MCM-22 zeolite by ultrasonic impregnation for Knoevenagel condensation vol.41, pp.8, 2015, https://doi.org/10.1007/s11164-014-1632-7
  9. Knoevenagel Condensation of Aldehydes and Ketones with Malononitrile Catalyzed by Amine Compounds-Tethered Fe3O4@SiO2 Nanoparticles vol.147, pp.1, 2017, https://doi.org/10.1007/s10562-016-1916-1
  10. Binary copper and iron oxides immobilized on silica-layered magnetite as a new reusable heterogeneous nanostructure catalyst for the Knoevenagel condensation in water vol.44, pp.10, 2018, https://doi.org/10.1007/s11164-018-3475-0
  11. Synthesis and characterization of the immobilized Ni–Zn–Fe layered double hydroxide (LDH) on silica-coated magnetite as a mesoporous and magnetically reusable catalyst for the preparation of benzylidenemalononitriles and bisdimedones (tetraketones) under green conditions vol.42, pp.11, 2018, https://doi.org/10.1039/C8NJ00788H
  12. ChemInform Abstract: Silica Supported Ammonium Acetate: An Efficient and Recyclable Heterogeneous Catalyst for Knoevenagel Condensation Between Aldehydes or Ketones and Active Methylene Group in Liquid Phase. vol.41, pp.12, 2010, https://doi.org/10.1002/chin.201012081
  13. Indium Modified Mesoporous Zeolite AlMCM-41 as a Heterogeneous Catalyst for the Knoevenagel Condensation Reaction vol.31, pp.5, 2010, https://doi.org/10.5012/bkcs.2010.31.5.1301
  14. Lithium hydroxide: A simple and an efficient catalyst for Knoevenagel condensation under solvent-free Grindstone method vol.15, pp.3, 2009, https://doi.org/10.1016/j.jscs.2010.10.010
  15. An Efficient Method for Knoevenagel Condensation Catalyzed by Tetrabutylammonium hexatungstate [TBA]2[W6O19] as Novel and Reusable Heterogeneous Catalyst vol.42, pp.7, 2012, https://doi.org/10.1080/15533174.2012.680140
  16. Calcined eggshell (CES): An efficient natural catalyst for Knoevenagel condensation under aqueous condition vol.125, pp.4, 2009, https://doi.org/10.1007/s12039-013-0443-5
  17. Calcined eggshell (CES): An efficient natural catalyst for Knoevenagel condensation under aqueous condition vol.125, pp.4, 2009, https://doi.org/10.1007/s12039-013-0443-5
  18. Ionic liquid coated sulfonated carbon/silica composites: novel heterogeneous catalysts for organic syntheses in water vol.4, pp.15, 2009, https://doi.org/10.1039/c3ra45229h
  19. Green condensation reaction of aromatic aldehydes with active methylene compounds catalyzed by anion-exchange resin under ultrasound irradiation vol.22, pp.None, 2015, https://doi.org/10.1016/j.ultsonch.2014.07.018
  20. Introduction of taurine (2-aminoethanesulfonic acid) as a green bio-organic catalyst for the promotion of organic reactions under green conditions vol.6, pp.111, 2009, https://doi.org/10.1039/c6ra15432h
  21. Synthesis and application of layered double hydroxide-hosted 2-aminoterephthalate for the Knoevenagel condensation reaction vol.48, pp.7, 2009, https://doi.org/10.1080/24701556.2019.1567538
  22. Bifunctional Gyroidal MOFs: Highly Efficient Lewis Base and Lewis Acid Catalysts vol.14, pp.20, 2009, https://doi.org/10.1002/asia.201900853
  23. Construction of a thermo-responsive polymer brush decorated Fe3O4@catechol-formaldehyde resin core-shell nanosphere stabilized carbon dots/PdNP nanohybrid and its application as vol.8, pp.7, 2009, https://doi.org/10.1039/c9ta12614g
  24. Introduction of an efficient DABCO-based bis-dicationic ionic salt catalyst for the synthesis of arylidenemalononitrile, pyran and polyhydroquinoline derivatives vol.1206, pp.None, 2009, https://doi.org/10.1016/j.molstruc.2020.127730
  25. HClO4-catalyzed Diastereoselective synthesis of 2-(4-oxo-4,5-dihydrothiazol-2-yl)-2-(2-oxoindolin-3-ylidene) acetonitrile from oxindole and 4-oxo-4,5-dihydrothiazol-2-yl acetonitrile vol.133, pp.4, 2009, https://doi.org/10.1007/s12039-021-01974-7