DOI QR코드

DOI QR Code

Organopalladium(II) Complexes as Ionophores for Thiocyanate Ion-Selective Electrodes

  • Kim, Dong-Wan (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, So-Hyun (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Jung-Hwan (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Jin-Eun (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, Jong-Keun (Department of Chemistry Education, Gyeongsang National University) ;
  • Kim, Jae-Sang (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University)
  • Published : 2009.10.20

Abstract

A thiocyanate poly(vinyl chloride) (PVC) membrane electrode based on [1,2-bis(diphenylphosphino)ethane]dihalopalladium( II), [(dppe)$PdX_2$, X = Cl ($L^1$), X = I ($L^2$)] as active sensor has been developed. The diiodopalladium complex, [(dppe)$PdI_2](L^2$) displays an anti-Hofmeister selectivity sequence: $SCN^-\;>\;I^-\;>\;{ClO_4}^-\;>\;Sal^-\;>\;Br^-\;>\;{NO_2}^-\;>\;{HPO_4}^-\;>\;AcO^-\;>\;{NO_3}^-\;>\;{H_2PO_4}^-\;>\;{CO_3}^{2-}$. The electrode exhibits a Nernstian response (-59.8 mV/decade) over a wide linear concentration range of thiocyanate ($(1.0\;{\times}\;10^{-1}\;to\;5.0\;{\times}\;10^{-6}$ M), low detection limit ($(1.1\;{\times}\;10^{-6}$ M), fast response $(t_{90%}$ = 24 s), and applicability over a wide pH range (3.5∼11). Addition of anionic sites, potassium tetrakis[p-chlorophenyl] borate (KTpClPB) is shown to improve potentiometric anion selectivity, suggesting that the palladium complex may operate as a partially charged carrier-type ionophore within the polymer membrane phase. The reaction mechanism is discussed with respect to UV-Vis and IR spectroscopy. Application of the electrode to the potentiometric titration of thiocyanate ion with silver nitrate is reported.

Keywords

References

  1. Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609. https://doi.org/10.1021/cr9603845
  2. Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
  3. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  4. Bakker, E.; Buehlmann, P.; Pretsch, E. Chem. Rev. 1997, 97, 3083. https://doi.org/10.1021/cr940394a
  5. Hofmeister, F. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247. https://doi.org/10.1007/BF01918191
  6. Ammann, D.; Huser, M.; Krauther, B.; Rusterholz, B.; Schulthess, P.; Lindemann, B.; Halder, E.; Simon, W. Helv. Chim. Acta 1986, 69, 849. https://doi.org/10.1002/hlca.19860690411
  7. Wegmann, D.;Weiss, H.; Ammann, D.; Morf, W. E.; Pretsch, E.; Sugahara, K.; Simon, W. Mikrochim. Acta 1984, 3, 1. https://doi.org/10.1007/BF01471643
  8. Meyerhoff, M. E. Clin. Chem. 1990, 36, 1567.
  9. Kachanovskii, A. E.; Shevchenko, V. N.; Petrukhin, O. M.; Dunina, V. V.; Zolotov, Y. A. Zh. Anal. Khim. 1981, 36, 2315.
  10. Koizumi, S.; Imato, T.; Ishibashi, N. J. Membr. Sci. 1997, 132, 149. https://doi.org/10.1016/S0376-7388(97)00075-6
  11. Sanchez-Pedreno, C.; Ortuno, J. A.; Martinez, D. Talanta 1998, 47, 305. https://doi.org/10.1016/S0039-9140(98)00132-5
  12. Ying, M.; Yuan, R.; Li, Z.-Q.; Song, Y.-Q.; Li, W.-X.; Lin, H.-G.; Shen, G.-L.; Yu, R.-Q. Fres. J. Anal. Chem. 1998, 361, 37.
  13. Hassan, S. S. M.; Elmosalamy, M. A. M. F. Analyst 1987, 112, 1709. https://doi.org/10.1039/an9871201709
  14. Elmosalamy, M. A. M. F.; Moody, G. J.; Thomas, J. D. R.; Hassan, S. S. M. Anal. Lett. 1987, 20, 1541. https://doi.org/10.1080/00032718708078025
  15. Florido, A.; Bachas, L. G.; Valiente, M.; Villaescusa, I. Analyst 1994, 119, 2421. https://doi.org/10.1039/an9941902421
  16. Wang, E.; Ohashi, K.; Kamata, S. Anal. Sci. 1991, 7, 755. https://doi.org/10.2116/analsci.7.Supple_755
  17. Bricker, J.; Daunert, S.; Bachas, L. G.; Valiente, M. Anal. Chem. 1991, 63, 1585. https://doi.org/10.1021/ac00015a016
  18. Mazloum-Ardakani, M.; Ensafi, A. A.; Niasari, M. S.; Chahooki, S. M. Anal. Chim. Acta 2002, 462, 25. https://doi.org/10.1016/S0003-2670(02)00314-8
  19. Abbaspour, A.; Kamyabi, M. A.; Esmaeilbeig, A. R.; Kia, R. Talanta 2002, 57, 859. https://doi.org/10.1016/S0039-9140(02)00129-7
  20. Xu, W.-J.; Chai, Y.-Q.; Yuan, R.; Liu, S.-L. Anal. Bioanal. Chem. 2006, 385, 926. https://doi.org/10.1007/s00216-006-0512-4
  21. Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. Anal. Chim. Acta 1999, 402, 137. https://doi.org/10.1016/S0003-2670(99)00549-8
  22. Zamani, H. A.; Malekzadegan, F.; Ganjali, M. R. Anal. Chim. Acta 2006, 555, 336. https://doi.org/10.1016/j.aca.2005.09.026
  23. Schulthess, P.; Ammann, D.; Simon, W.; Caderas, C.; Stepanek, R.; Krautler, B. Helv. Chim. Acta 1984, 67, 1026. https://doi.org/10.1002/hlca.19840670415
  24. Ammann, D.; Huser, M.; Kräutler, B.; Rusterholz, B.; Schultess, P.; Lindemann, B.; Halder, E.; Simon, W. Helv. Chim. Acta 1986, 69, 849. https://doi.org/10.1002/hlca.19860690411
  25. Huser, M.; Morf, W. E.; Fluri, K.; Seiler, K.; Schulthess, P.; Simon, W. Helv. Chim. Acta 1990, 73, 1481. https://doi.org/10.1002/hlca.19900730528
  26. Hodinar, A.; Jyo, A. Anal. Chem. 1989, 61, 1169 https://doi.org/10.1021/ac00185a024
  27. Brown, D. V.; Chaniotakis, N. A.; Lee, I. H.; Ma, S. C.; Park, S. B.; Meyerhoff, M. E.; Nick, R. J.; Groves, J. T. Electroanalysis 1989, 1, 477. https://doi.org/10.1002/elan.1140010602
  28. Gao, D.; Gu, J.; Yu, R.-Q.; Zheng, G.-D. Anal. Chim. Acta 1995, 302, 263. https://doi.org/10.1016/0003-2670(94)00447-T
  29. Gao, D.; Liu, D.; Yu, R.-Q.; Zheng, G.-D. Fres. J. Anal.Chem. 1995, 351, 484. https://doi.org/10.1007/BF00322720
  30. Bart, T. Y.; Vliotti, A. B.; Sikorova, I. A.; Shashkina, I. V. Zh. Prikl. Khim. 1992, 65, 540.
  31. Jyo, A.; Minakami, R.; Kanda, Y.; Egawa, H. Sens. Actuators, B: Chem. 1993, 13, 200. https://doi.org/10.1016/0925-4005(93)85361-D
  32. Gao, D.; Liu, D.; Yu, R.-Q.; Zheng, G.-D. Anal. Chem. 1994, 66, 2245. https://doi.org/10.1021/ac00086a008
  33. Daunert, S.; Wallace, S.; Florido, A.; Bachas, L. G. Anal. Chem. 1991, 63, 1676. https://doi.org/10.1021/ac00017a005
  34. Jyo, A.; Egawa, H. Anal. Sci. 1992, 8, 823. https://doi.org/10.2116/analsci.8.823
  35. Li, Z-Q.; Wu, Z.-Y.; Yuan, R.; Ying, M.; Shen, G.-L.; Yu, R.-Q. Electrochim. Acta 1999, 44, 2543. https://doi.org/10.1016/S0013-4686(98)00361-2
  36. Aslan, N. Ankara University, Ph.D. thesis, 2000.
  37. Egorov, V. V.; Sin'kevich, Y. V. Talanta 1999, 48, 23. https://doi.org/10.1016/S0039-9140(98)00207-0
  38. Mazloum-Ardakani, M.; Ensafi, A. A.; Niasari, M. S.; Chahooki, S. M. Anal. Chim. Acta 2002, 462, 25. https://doi.org/10.1016/S0003-2670(02)00314-8
  39. Badr, I. H. A.; Meyerhoff, M. E.; Hassan, S. S. M. Anal. Chem. 1995, 67, 2613. https://doi.org/10.1021/ac00111a019
  40. DiMarco, G.; Lanza, M. Sens. Actuators, B: Chem. 2000, B63, 42.
  41. Oberhauser, W.; Bachmann, C.; Stampfl, T.; Haid, R.; Bruggeller, P. Polyhedron 1997, 16, 2827. https://doi.org/10.1016/S0277-5387(97)00009-0
  42. Buehlmann, P.; Umezawa, Y.; Rondinini, S.; Vertova, A.; Pigliucci, A.; Bertesago, L. Anal. Chem. 2000, 72, 1843 https://doi.org/10.1021/ac991130x
  43. Schaller, U.; Bakker, E.; Pretsch, E. Anal. Chem. 1995, 67, 3123. https://doi.org/10.1021/ac00114a005
  44. Bakker, E.; Pretsch, E.; Buhlmann, P. Anal. Chem. 2000, 72, 1127. https://doi.org/10.1021/ac991146n
  45. Cotton, F. A.; Wilkinson, G.; Bochmann, M.; Murillo, C. Advanced Inorganic Chemisty, 6th ed.; Wiley: New York, 1998; pp. 1248.
  46. Huheey, J. E. Inorganic Chemistry, 4th ed.; Harper Collins: New York, 1993; pp. 936.
  47. Meek, D. W.; Nicpon, P. E.; Meek, V. I. J. Am. Chem. Soc. 1970, 92, 5351. https://doi.org/10.1021/ja00721a011

Cited by

  1. Synthesis, Structural and Thermal Studies of a New Nickel Complex Containing 2-Aminopyrimidine and Thiocyanate Mixed Ligands with a Three-Dimensional Network Structure vol.41, pp.5, 2011, https://doi.org/10.1007/s10870-010-9949-6
  2. Intriguing sensing properties of a di-tripodal amine calix[4]arene ionophore towards anions from Donnan failure in ion-selective membranes induced by Cu2+ vol.37, pp.12, 2013, https://doi.org/10.1039/c3nj00748k
  3. The Novel SCN- Ion-selective Electrode Based on the 1-Benzyl-3-(4-nitrophenyl) thio-urea Ionophore vol.35, pp.11, 2014, https://doi.org/10.5012/bkcs.2014.35.11.3175