DOI QR코드

DOI QR Code

AC Conductivity Studies of Polyaniline-polymannuronate Nanocomposites

  • Basavaraja, C. (Department of Chemistry and Institute of Functional Material, Inje University) ;
  • Kim, Na-Ri (Department of Chemistry and Institute of Functional Material, Inje University) ;
  • Jo, Eun-Ae (Department of Chemistry and Institute of Functional Material, Inje University) ;
  • Pierson, R. (Department of Chemistry and Institute of Functional Material, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Functional Material, Inje University)
  • Published : 2009.07.20

Abstract

Temperature and frequency dependent AC conductivity behavior has been studied for the chemically synthesized polyaniline-polymannuronate (PANI-PM) composites. The temperature (300 - 500 K) and frequency (100 - $10^6$ Hz) dependent AC conductivity suggests evidence for the transport mechanism in PANI-PM composites. The frequency dependence of AC conductivity has been investigated by the power law. The frequency exponent (s) is determined, and the data suggest that s decreases with temperature. The variation of s with temperature suggests that AC conduction is due to the correlated barrier hopping.

Keywords

References

  1. Levi, B. G. Phys. Today 2000, 53, 19
  2. MacDiarmid, A. G. Angew. Chem. Int. Ed. 2001, 40, 2581 https://doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
  3. Jin, Z.; Su, Y.; Duan, Y. Sens. Actuators B 2001, 72, 75 https://doi.org/10.1016/S0925-4005(00)00636-5
  4. Sotomayor, P. T.; Raimurdo, I. M.; Jr, A.; Zarbin, J. G.; Rohwedder, J. J. R.; Netto, G. O.; Alves, O. L. Sens. Actuators B 2001, 74, 157 https://doi.org/10.1016/S0925-4005(00)00726-7
  5. Kane-Maguire, L. A. P.; Wallsce, G. G. Synth. Met. 2001, 119, 39 https://doi.org/10.1016/S0379-6779(00)00652-4
  6. Hamers, R. J. Nature 2001, 412, 489 https://doi.org/10.1038/35087682
  7. Rosseinsky, D. R.; Mortimer, R. J. Adv. Mater. 2001, 13, 783 https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
  8. Kim, G. H. Macromol. Res. 2004, 12, 564 https://doi.org/10.1007/BF03218445
  9. Cha, S. H.; Kim, J. U.; Lee, J. C. Macromol. Res. 2008, 16, 711 https://doi.org/10.1007/BF03218585
  10. El-Sherif, M. E.; Yuan, J.; MacDiarmid, A. G. J. Intell. Mater. Syst. Struct. 2000, 11, 407 https://doi.org/10.1177/104538900772664747
  11. Mallik, H.; Sarkar, A. J. Non-Cryst. Solid. 2006, 352, 795 https://doi.org/10.1016/j.jnoncrysol.2006.02.032
  12. Tiwari, A. J. Poly. Res. 2008, 15, 337 https://doi.org/10.1007/s10965-008-9176-4
  13. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh, D. S. J. Poly. Sci. B: Poly. Phys. 2009, 47, 36 https://doi.org/10.1002/polb.21611
  14. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh, D. S. Bull. Korean Chem. Soc. 2008, 29, 1
  15. Prakash, O.; Mandal, K. D.; Christopher, C. C.; Sastry, M. S.; Kumar, D. J. Mater. Sci. 1996, 31, 4705 https://doi.org/10.1007/BF00366373
  16. Birey, H. J. Appl. Phys. 1978, 49, 2898 https://doi.org/10.1063/1.325174
  17. Mott, N. F.; Davis, E. A. Electronic, Processes I Non Crystalline Materials, 2nd Ed.; Oxford Clarendon: London, 1979
  18. Long, A. R. Adv. Phys. 1982, 31, 553 https://doi.org/10.1080/00018738200101418
  19. Elliott, S. R. Adv. Phys. 1987, 36, 135 https://doi.org/10.1080/00018738700101971
  20. Dyre, J. J. Appl. Phys. 1988, 64, 2456 https://doi.org/10.1063/1.341681
  21. Long, A. R. Adv. Phys. 1982, 31, 553 https://doi.org/10.1080/00018738200101418
  22. Elliott, S. R. Adv. Phys. 1987, 36, 135 https://doi.org/10.1080/00018738700101971
  23. Efros, A. L. Philos. Mag. B 1981, 43, 829 https://doi.org/10.1080/01418638108222349
  24. Ghosh, M.; Barman, A.; De, S. K.; Chatterjee, S. J. Appl. Phys. 1998, 84, 806 https://doi.org/10.1063/1.368141

Cited by

  1. Disorder induced conductivity enhancement in SHI irradiated undoped and N-doped 6H-SiC single crystals vol.27, pp.11, 2016, https://doi.org/10.1007/s10854-016-5323-6
  2. Polyacrylonitrile/polyaniline composite nanofiber webs with electrostatic discharge properties vol.50, pp.28, 2016, https://doi.org/10.1177/0021998316630583
  3. The effect of the dissolution process and the polyaniline content on the properties of polyacrylonitrile–polyaniline composite nanoweb vol.45, pp.6, 2016, https://doi.org/10.1177/1528083714564636