DOI QR코드

DOI QR Code

Spatial Symmetry Breaking in the Revival Wave of the Belousov-Zhabotinsky Reaction Containing 1,4-Cyclohexanedione

  • Basavaraja, C. (Department of Chemistry and Institute of Functional Material, Inje University) ;
  • Kim, Na-Ri (Department of Chemistry and Institute of Functional Material, Inje University) ;
  • Park, Hyun-Tae (Department of Chemistry and Institute of Functional Material, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Functional Material, Inje University)
  • Published : 2009.04.20

Abstract

Complex breakup behavior in the revival wave has been observed in the Belousov-Zhabotinsky(BZ) reaction system containing 1,4-cyclohexanedione (1,4-CHD) in the dish divided into two compartments with a sliding window. A same reaction mixture is poured into the two compartments individually with time difference. Wave propagation exhibited different behavior in the revival wave of the reaction system. This was largely dependent on the progress time prior to the pouring into each compartment and on the gap between the times of pouring into the two compartments. The revival wave in the reaction system is induced spontaneously as a new wave train with a long time lag after the disappearance of the initially induced wave. A thoroughgoing study of the chaotic breakup of propagating chemical wave train was to be possible since the revival wave has a longer wavelength, clearer wave-train patterns, and longer duration period.

Keywords

References

  1. Winfree, A. T. Science 1972, 175, 634. https://doi.org/10.1126/science.175.4022.634
  2. Showalter, K. J. Chem. Phys. 1980, 73, 3735. https://doi.org/10.1063/1.440603
  3. Cantrell, R. S. SIAM Rev. 1996, 38, 256. https://doi.org/10.1137/1038041
  4. Handbook of Crystal Growth; Hurle, D. T. J., Ed.; North-Holland: Amsterdam, 1993; Vol. 1B.
  5. The Theory and Applications of Reaction-diffusion Equations: Patterns and Waves; Grindrod, P., Ed.; Clarendon Press: Oxford, 1996.
  6. Diffusion and Reactions in Fractals and Disordered Systems; Ben-Avraham, D.; Havlin, S., Eds.; Cambridge University Press: Cambridge, 2000.
  7. Neufeld, Z.; Kiss, I. Z.; Zhou, C. S.; Kurths, J. Phys. Rev. Lett. 2003, 91, 084101. https://doi.org/10.1103/PhysRevLett.91.084101
  8. Scheuring, I.; Karolyi, G.; Pentek, T. T. A.; Toroczkai, Z. Freshwater Biol. 2000, 45,123. https://doi.org/10.1046/j.1365-2427.2000.00665.x
  9. Abel, M.; Celani, A.; Vergni, D.; Vulpiani, A. Phys. Rev. E 2001, 64, 046307. https://doi.org/10.1103/PhysRevE.64.046307
  10. Abel, M.; Cencini, M.; Vergni, D.; Vulpiani, A. Chaos 2002, 12, 481. https://doi.org/10.1063/1.1457467
  11. Cencini, M.; Torcini, A.; Vergni, D.; Vulpiani, A. Phys. Fluids 2003, 15, 679. https://doi.org/10.1063/1.1541668
  12. Tel, T.; de Moura, A.; Grebogi, C.; Karolyi, G. Phys. Rep. 2005, 413, 91. https://doi.org/10.1016/j.physrep.2005.01.005
  13. Ronney, P. D.; Haslam, B. D.; Rhys, N. O. Phys. Rev. Lett. 1995, 74, 3804. https://doi.org/10.1103/PhysRevLett.74.3804
  14. Leconte, M.; Martin, J.; Rakotomalala, N.; Salin, D. Phys. Rev. Lett. 2003, 90, 128302. https://doi.org/10.1103/PhysRevLett.90.128302
  15. Nugent, C. R.; Quarles, W. M.; Solomon, T. H. Phys. Rev. Lett. 2004, 93, 218301. https://doi.org/10.1103/PhysRevLett.93.218301
  16. Paoletti, M. S.; Solomon, T. H. Europhys. Lett. 2005, 69, 819. https://doi.org/10.1209/epl/i2004-10409-9
  17. Chemical Waves and Patterns; Kapral, R.; Showalter, K., Eds.; Kluwer Academic Publishers: Dordrecht, 1995
  18. Zaikin, N.; Zhabotinsky, A. M. Nature 1970, 225, 535.
  19. Manz, N.; Ginn, B. T.; Steinbock, O. Phys. Rev. E 2006, 73, 66218. https://doi.org/10.1103/PhysRevE.73.066218
  20. Spatio-Temporal Pattern Formation; Walgraef, D., Ed.; Springer: New York, 1997.
  21. Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems; Busse, F. H.; Kramer, L., Eds.; Plenum Press: New York, 1990.
  22. Li, Y. J.; Oslonovitch, J.; Mazouz, N.; Plenge, F.; Krischer, K.; Ertl, G. Science 2001, 291, 2395. https://doi.org/10.1126/science.1057830
  23. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors; Scholl, E., Ed.; Cambridge University Press: Cambridge, 2001.
  24. Ackemann, T.; Lange, W. Appl. Phys. B 2001, 72, 21.
  25. Umbanhowar, P. B.; Melo, F.; Swinney, H. L. Nature 1996, 382, 793. https://doi.org/10.1038/382793a0
  26. Winfree, T. J. Biosci. 2002, 27, 465. https://doi.org/10.1007/BF02705042
  27. Dahlem, M. A., Ph.D. thesis; Otto-von-Guericke-Universitat Magdeburg, 2000.
  28. Biochemical Oscillations and Cellular Rhythms; Goldbeter, A., Ed.; Cambridge University Press: Cambridge, 1996.
  29. The Self-Made Tapestry: Pattern Formation in Nature; Ball, P., Ed.; Oxford University Press: Oxford, 1999.
  30. Steinbock, O.; Muller, S. C. Z. Naturforsch. C 1995, 50, 275.
  31. Mathematical Biology; Murray, J. D., Ed.; Springer-Verlag: Berlin, 1989.
  32. Self-Organized Biological Dynamics & Nonlinear Control; Walleczek, J., Ed.; Cambridge University Press: Cambridge, 2000.
  33. Orban, M. J. Am. Chem. Soc. 1980, 102, 4311-4314. https://doi.org/10.1021/ja00533a004
  34. Oscillations and Travelling Waves in Chemical Systems; Field, R. J.; Burger, M., Eds.; Wiley: New York, 1985.
  35. An Introduction to Non-linear Chemical Dynamics; Epstein, I. R.; Pojman, J. A., Eds.; Oxford University Press: New York, 1998.
  36. Huh, D. S.; Choe, S. J.; Kim, M. S. React. Kinet. Catal. Lett. 2001, 74, 11. https://doi.org/10.1023/A:1014130907392
  37. Huh, D. S.; Kim, M. S.; Choe, S. J. Bull. Korean Chem. Soc. 2001, 22, 867
  38. Huh, D. S.; Kim, Y. J.; Wang, J. Phys. Chem. Chem. Phys. 2003, 5, 3188. https://doi.org/10.1039/b304807a
  39. Huh, D. S.; Kim, Y. J.; Choe, S. J. Bull. Korean Chem. Soc. 2004, 25(2), 267. https://doi.org/10.5012/bkcs.2004.25.2.267
  40. Manz, N.; Ginn, B. T.; Steinbock, O. Phys. Rev. E 2006, 73, 066218, 1-4.
  41. Bansagi, T.; Palczewski, C.; Steinbock, O. J. Phys. Chem. A 2007, 111, 2492-2497. https://doi.org/10.1021/jp068425g
  42. Agladze, K.; Thouvenel-Romans, S.; Steinbock, O. Phys. Chem. Chem. Phys. 2001, 3, 1326-1330 https://doi.org/10.1039/b009425k
  43. Hamik, C. T.; Manz, N.; Steinbock, O. J. Phys. Chem. A 2001, 105, 6144-6153. https://doi.org/10.1021/jp010270j
  44. Diewald, M.; Brand, H. R. Phys. Rev. E 1995, 51, R5200. https://doi.org/10.1103/PhysRevE.51.R5200
  45. Hydrodynamic and Hydromagnetic Stability; Chandrasekhar, S., Ed.; Oxford University Press: London, 1961

Cited by

  1. Growth of spherulitic crystal patterns in a Belousov–Zhabotinski type reaction system vol.35, pp.5, 2011, https://doi.org/10.1039/c0nj00798f
  2. Growth and forms of spherulitic crystal pattern in a Belousov-Zhabotinski type reaction system vol.46, pp.3, 2011, https://doi.org/10.1002/crat.201000525
  3. Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3397
  4. Revival Oscillations in a Closed Bromate‐1,4‐Cyclohexanedione‐Acid System with Ferroin vol.4, pp.12, 2009, https://doi.org/10.1002/adts.202100277