DOI QR코드

DOI QR Code

Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer

  • Park, Sang-Eun (Dept. of Chemical and Bio Engineering, Kyungwon University) ;
  • Lee, Jea-Won (Dept. of Chemical Engineering, Yonsei University) ;
  • Haam, Seung-Joo (Dept. of Chemical Engineering, Yonsei University) ;
  • Lee, Sang-Wha (Dept. of Chemical and Bio Engineering, Kyungwon University)
  • Published : 2009.04.20

Abstract

Double-doped magnetic particles that incorporated magnetites into both the surface and inside the silica cores were fabricated via the sol-gel reaction of citrate-stabilized magnetites with silicon alkoxide. Double-doped magnetic particles were easily fabricated and exhibited an higher magnetism in comparison to the singledoped magnetic particles that were prepared by the erosion of surface-deposited magneties from double-doped magentic particles. Thin gold layer was formed over magnetic silica nanospheres via nanoseed-mediated growth of gold clusters. The plasmon-derived absorption bands of double-doped magnetic silica-gold nanoshells were more broadened and shifted down by ca. 20 nm as compared to those of single-doped magnetic silicagold nanoshells, which were attributed to not only the surface scattering of incident light due to relatively rough surafce morphology, but also heterogeneous permittivity of dielectric cores due to surface-deposited magnetites.

Keywords

References

  1. Eustis, S.; El-sayed, M. A. Chem. Soc. Rev. 2006, 35, 209. https://doi.org/10.1039/b514191e
  2. Lu, A. H.; Salabas, E. L.; Schüth, F. Angew. Chem. Int. Ed. 2007, 46, 1222. https://doi.org/10.1002/anie.200602866
  3. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  4. Brust, M.; Kiely, C. J. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 202, 175. https://doi.org/10.1016/S0927-7757(01)01087-1
  5. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. PNAS 2003, 100, 13549. https://doi.org/10.1073/pnas.2232479100
  6. Pham, T; Jackson, J. B.; Halas, N. J.; Lee, T. R. Langmuir 2002, 18, 4915. https://doi.org/10.1021/la015561y
  7. Maceira, V. S.; Duarte, M. A. C.; Farle, M.; Quintela, A. L.; Sieradzki, K.; Diaz, R. Chem. Mater. 2006, 18, 2701. https://doi.org/10.1021/cm0603001
  8. Ji, X.; Shao, R.; Elliott, A. M.; Stafford, R. J.; Coss, E. E.; Bankson, J. A.; Liang, G.; Luo, Z. P.; Park, K.; Markert, J. T.; Li, C. J. Phys. Chem. C 2007, 111, 6245. https://doi.org/10.1021/jp0702245
  9. Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J. S.; Kim, S. K.; Cho, M. H.; Hyeon, T. Angew. Chem. Int. Ed. 2006, 45, 7754. https://doi.org/10.1002/anie.200602471
  10. Stoeva, S. I.; Huo, F.; Lee, J. S.; Papaefthymiou, G. C.; Kundaliya, D.; Ying, J. Y. J. Am. Chem. Soc. 2005, 127, 4990. https://doi.org/10.1021/ja0428863
  11. Barnakov, Y. A.; Yu, M. H.; Rosenzweig, Z. Langmuir 2005, 21, 7524. https://doi.org/10.1021/la0508893
  12. Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. Langmuir 2001, 17, 2900. https://doi.org/10.1021/la0008636
  13. Aliev, F. G.; Duarte, M. A. C.; Mamedov, A.; Ostrander, J. W.; Giersig, M.; Marzan, L. M. L.; Kotov, N. A. Adv. Mater. 1999, 11, 1006. https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1006::AID-ADMA1006>3.0.CO;2-2
  14. Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. Adv. Colloid Interface Sci. 2006, 123, 471. https://doi.org/10.1016/j.cis.2006.05.026
  15. Yang, J.; Lee, C.; Ko, H.; Suh, J.; Yoon, H.; Lee, K.; Huh, Y.; Haam, S. Angew. Chem. Int. Ed. 2007, 46, 8836. https://doi.org/10.1002/anie.200703554
  16. Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 3995. https://doi.org/10.1016/j.biomaterials.2004.10.012
  17. Massart, R. IEE Trans. Magn. 1981, 12, 1247.
  18. Liu, X.; Ma, Z.; Xing, J.; Liu, H. J. Magn. Mater. 2004, 270, 1. https://doi.org/10.1016/j.jmmm.2003.07.006
  19. Duff, D. G.; Baiker, A. Langmuir 1993, 9, 2310. https://doi.org/10.1021/la00033a011
  20. Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y. Nano Lett. 2002, 2, 183, https://doi.org/10.1021/nl015681q
  21. Li, T.; Deng, Y.; Song, X.; Jin, Z.; Zhang, Y. Bull. Korean Chem. Soc. 2003, 24, 957. https://doi.org/10.5012/bkcs.2003.24.7.957
  22. Morais, P. C.; Santos, R. L.; Pimenta, A. C. M.; Azevedo, R. B.; Lima, E. C. D. Thin Solid Film 2006, 515, 266. https://doi.org/10.1016/j.tsf.2005.12.079
  23. Hay, M. B.; Myneni, S. C. B. Geochim. Cosmochim. Acta 2007, 71, 3518. https://doi.org/10.1016/j.gca.2007.03.038
  24. Lanigan, K. C.; Pidsosny, K. Vib. Spectrosc. 2007, 45, 2. https://doi.org/10.1016/j.vibspec.2007.03.003
  25. Park, S. E.; Park, M. Y.; Han, P. K.; Lee, S. W. Bull. Korean Chem. Soc. 2006, 27, 1341. https://doi.org/10.5012/bkcs.2006.27.9.1341
  26. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824. https://doi.org/10.1038/nature01937
  27. Raether, H. Surface Plasmons; Springer: Berlin, 1988; p 36.
  28. Jung, Y. S.; Sun, Z.; Blachere, J.; Kim, H. K. Appl. Phys. Lett. 2005, 87, 263116. https://doi.org/10.1063/1.2159095
  29. Miller, M. M.; Lazarides, A. A. J. Phys. Chem. B 2005, 109, 21556. https://doi.org/10.1021/jp054227y

Cited by

  1. core and Ag Shell for the Development of Fingerprints vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1457
  2. Preparation and evaluation of Fe3O4-core@Ag-shell nanoeggs for the development of fingerprints vol.56, pp.5, 2013, https://doi.org/10.1007/s11426-012-4764-x
  3. Chitosan-Tethered Iron Oxide Composites as an Antisintering Porous Structure for High-Performance Li-Ion Battery Anodes vol.99, pp.8, 2016, https://doi.org/10.1111/jace.14286
  4. nanoparticles with silica thin layer as an anode material for lithium secondary batteries vol.T139, pp.1402-4896, 2010, https://doi.org/10.1088/0031-8949/2010/T139/014027
  5. @GSH-Pt NCs Core-Shell Microspheres for Latent Fingerprint Detection vol.91, pp.12, 2018, https://doi.org/10.1246/bcsj.20180168
  6. PREPARATION AND CHARACTERIZATION OF CHITOSAN-GOLD NANOCOMPOSITES FOR DRUG DELIVERY APPLICATION vol.17, pp.2, 2009, https://doi.org/10.1142/s0218625x10013643
  7. Facile control of morphological characteristics of magnetite aggregates (nFe3O4) by the addition of bifunctional ligands vol.209, pp.12, 2009, https://doi.org/10.1002/pssa.201228206
  8. Preparation and Characterization of Silica-coated Gold Nanoflowers (AuNFs) with Raman Dye Encoding vol.35, pp.9, 2009, https://doi.org/10.5012/bkcs.2014.35.9.2765
  9. Preparation and Characterization of Silica-coated Gold Nanoflowers (AuNFs) with Raman Dye Encoding vol.35, pp.9, 2009, https://doi.org/10.5012/bkcs.2014.35.9.2765
  10. Comparative hyperthermia effects of silica–gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells vol.10, pp.specal, 2009, https://doi.org/10.2147/ijn.s88309