DOI QR코드

DOI QR Code

Characterization of Graphene Sheets Formed by the Reaction of Carbon Monoxide with Aluminum Sulfide

  • Yoon, Il-Sun (Department of Chemistry, KAIST) ;
  • Kim, Chang-Duk (Faculty of Liberal Education, Sangju Campus, Kyungpook National University) ;
  • Min, Bong-Ki (Instrumental Analysis Center, Yeungnam University) ;
  • Kim, Young-Ki (Center for Research Facilities, Ulsan National Institute of Science and Technology) ;
  • Kim, Bong-Soo (Department of Chemistry, KAIST) ;
  • Jung, Woo-Sik (School of Display and Chemical Engineering, College of Engineering, Yeungnam University)
  • Published : 2009.12.20

Abstract

Graphene sheets formed by the reaction of carbon monoxide (CO) with aluminum sulfide ($Al_2S_3$) at reaction temperatures ${\leq}$ 800 $^{\circ}$ were characterized by X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The graphene sheets, formed as CO was reduced to gaseous carbon by the reaction with $Al_2S_3$, in the temperature range 800 - 1100 $^{circ}C$, did not exhibit their characteristic XRD peaks because of the small number of graphene layers and/or low crystallinity of graphene sheets. Raman spectra of graphene sheets showed that the intensity ratio of the D band to the G band decreased and the 2D band was shifted to higher frequencies with increasing reaction temperature, indicating that the number of graphene layers increased with increasing reaction temperature.

Keywords

References

  1. Sen, R.; Govindaraj, A.; Rao, C. N. R. Chem. Mater. 1997, 9, 2078 https://doi.org/10.1021/cm9700965
  2. Nikaolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Chem. Phys. Lett. 1999, 313, 91 https://doi.org/10.1016/S0009-2614(99)01029-5
  3. Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smally, R. E.; Hauge, R. H. J. Phys. Chem. B 2001, 105, 8297 https://doi.org/10.1021/jp0114891
  4. Alvarez, W. E.; Pompeo, F.; Herrera, J. E.; Balzano, L.; Resasco, D. E. Chem. Mater. 2002, 14, 1853 https://doi.org/10.1021/cm011613t
  5. Xu, Y.-Q.; Hauge, R. H. J. Phys. Chem. C 2007, 111, 9142 https://doi.org/10.1021/jp071137f
  6. Liu, S.; Tang, S.; Mastai, Y.; Felner, I.; Gedanken, A. J. Mater. Chem. 2000, 10, 2502 https://doi.org/10.1039/b004901h
  7. Liu, S.; Boeshore, S.; Fernandez, A.; Sayagues, M. J.; Fischer, J. E.; Gedanken, A. J. Phys. Chem. B 2001, 105, 7606 https://doi.org/10.1021/jp010083l
  8. Liu, S.; Yue, J.; Wehmschulte, R. J. Nano Lett. 2002, 2, 1439 https://doi.org/10.1021/nl0257869
  9. Jung, W.-S.; Ahn, S.-K. Mater. Lett. 2000, 43, 53 https://doi.org/10.1016/S0167-577X(99)00229-3
  10. Kim, C.-D.; Min, B.-K.; Jung, W.-S. Carbon 2009, 47, 1610 https://doi.org/10.1016/j.carbon.2009.02.025
  11. Selvadruray, G.; Sheet, L. Mater. Sci. Technol. 1993, 9, 463 https://doi.org/10.1179/mst.1993.9.6.463
  12. Joo, H. Y.; Jung, W.-S. J. Alloys Compd. 2008, 465, 265 https://doi.org/10.1016/j.jallcom.2007.10.050
  13. Jung, W.-S.; Ahn, S.-K. J. Eur. Ceram. Soc. 2001, 21, 79 https://doi.org/10.1016/S0955-2219(00)00173-4
  14. Ferrari, A. C. Solid State Commun. 2007, 143, 47 https://doi.org/10.1016/j.ssc.2007.03.052
  15. Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C.; Mammana, V. P. Appl. Phys. Lett. 2004, 85, 1265 https://doi.org/10.1063/1.1782253
  16. Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Nano Lett. 2008, 8, 2012 https://doi.org/10.1021/nl8011566
  17. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192 https://doi.org/10.1021/jp710931h
  18. Gupta, A.; Chen, G.; Tadigadapa, S.; Eklund, P. C. Nano Lett. 2006, 6, 2667 https://doi.org/10.1021/nl061420a
  19. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jori, A.; Saito, R. Phys. Chem. Chem. Phys. 2007, 9, 1276 https://doi.org/10.1039/b613962k
  20. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscane, S.; Jiang, D.; Novoselov, K. S.; Roth, S.;Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401 https://doi.org/10.1103/PhysRevLett.97.187401
  21. Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H. M.; Wu, Y. H.; Chen, W.; Wee, A. T. S. J. Phys. Chem. C 2008, 112, 10637 https://doi.org/10.1021/jp8008404
  22. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60 https://doi.org/10.1038/nature05545

Cited by

  1. The Preparation of Alumina Particles Wrapped in Few-layer Graphene Sheets and Their Application to Dye-sensitized Solar Cells vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1579
  2. Nanotube Composites with Enhanced Photocatalytic Activity vol.2, pp.6, 2012, https://doi.org/10.1021/cs200621c
  3. Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties vol.49, pp.12, 2014, https://doi.org/10.1007/s10853-014-8109-3
  4. /Reduced Graphene Oxide for Efficient Degradation of Organic Pollutants vol.34, pp.3, 2017, https://doi.org/10.1002/ppsc.201600323
  5. –RGO ternary hybrid hollow nanorod arrays as high-performance catalysts for methanol electrooxidation vol.4, pp.5, 2016, https://doi.org/10.1039/C5TA08585C
  6. Research on Photocatalytic Properties of TiO2-Graphene Composites with Different Morphologies vol.26, pp.7, 2017, https://doi.org/10.1007/s11665-017-2776-6
  7. Fabrication and Characterization of Graphene from Solid Carbon Dioxide vol.1115, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1115.418
  8. /graphene hybrid supported Au and Ag nanoparticles with multi-functional catalytic properties vol.28, pp.20, 2017, https://doi.org/10.1088/1361-6528/aa6a45
  9. Formation of Cube-shaped α-Al2O3 Microstructures by the Reaction of Carbon Monoxide with Aluminum Sulfide vol.31, pp.12, 2009, https://doi.org/10.5012/bkcs.2010.31.12.3864
  10. Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques vol.21, pp.5, 2009, https://doi.org/10.1016/j.ultsonch.2014.04.016
  11. Tin Disulfide Nanosheets with Active-Site-Enriched Surface Interfacially Bonded on Reduced Graphene Oxide Sheets as Ultra-Robust Anode for Lithium and Sodium Storage vol.10, pp.34, 2018, https://doi.org/10.1021/acsami.8b07741
  12. SnS2-SnS pn hetero-junction bonded on graphene with boosted charge transfer for lithium storage vol.13, pp.48, 2009, https://doi.org/10.1039/d1nr05438d