DOI QR코드

DOI QR Code

Layer-by-Layer Approach to Bio-Inspired, Large-Area Formation of Silica Thin Films

  • Published : 2009.09.20

Abstract

Keywords

References

  1. Bai, J.; Snively, C. M.; Delgass, W. N. Adv. Mater. 2002, 14, 1546 https://doi.org/10.1002/1521-4095(20021104)14:21<1546::AID-ADMA1546>3.0.CO;2-U
  2. Ward, J. H.; Bashir, R.; Peppas, N. A. J. Biomed. Mater. Res. 2001, 56, 351 https://doi.org/10.1002/1097-4636(20010905)56:3<351::AID-JBM1103>3.0.CO;2-A
  3. Flemming, R. G.; Murphy, C. J.; Abrams, G. A.; Goodman, S. L.; Nealey, P. F. Biomaterials 1999, 20, 573 https://doi.org/10.1016/S0142-9612(98)00209-9
  4. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber; D. E. Science 1997, 276, 1425 https://doi.org/10.1126/science.276.5317.1425
  5. Chou, S. Y.; Keimel, C.; Gu, J. Nature 2002, 417, 835 https://doi.org/10.1038/nature00792
  6. Kambhampati, D. K.; Jakob, T. A. M.; Robertson, J. W.; Cai, M.; Pemberton, J. E.; Knoll, W. Langmuir 2001, 17, 1169 https://doi.org/10.1021/la001250w
  7. Rogers, J. A.; Mirkin, C. Mater. Res. Bull. 2001, 26, 506 https://doi.org/10.1557/mrs2001.121
  8. Fodor, S. P. A. Science 1997, 277, 393 https://doi.org/10.1126/science.277.5324.393
  9. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Science 1996, 272, 85 https://doi.org/10.1126/science.272.5258.85
  10. Chee, M.; Yang, R.; Hubbell, E.; Berno, A.; Huang, X. C.; Stern, D.; Winkler, J.; Lockhart, D. J.; Morris, M. S.; Fodor, S. P. A. Science 1996, 274, 610 https://doi.org/10.1126/science.274.5287.610
  11. Petrucci, M. G. L.; Kakkar, A. K. Chem. Mater. 1999, 11, 269 https://doi.org/10.1021/cm9804968
  12. R$\ddot{u}$he, J.; Yano, R.; Lee, J. S.; K$\ddot{o}$berle, P.; Knoll, W.; Offenh$\ddot{a}$usser, A. J. Biomater. Sci., Polym. Ed. 1999, 10, 859 https://doi.org/10.1163/156856299X00928
  13. Cho, W. K.; Kang, S. M.; Kim, D. J.; Yang, S. H.; Choi, I. S. Langmuir 2006, 22, 11208 https://doi.org/10.1021/la062191a
  14. Brutchey, R. L.; Morse, D. E. Chem. Rev. 2008, 108, 4915 https://doi.org/10.1021/cr078256b
  15. B$\ddot{a}$uerlein, E. Angew. Chem. Int. Ed. 2003, 42, 614 https://doi.org/10.1002/anie.200390176
  16. Sumper, M. Science 2002, 295, 2430 https://doi.org/10.1126/science.1070026
  17. Kr$\ddot{o}$ger, N.; Lorenz, S.; Brunner, E.; Sumper, M. Science 2002, 298, 584 https://doi.org/10.1126/science.1076221
  18. Kr$\ddot{o}$ger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M. Proc. Natl. Acad. Sci. USA 2000, 97, 14133 https://doi.org/10.1073/pnas.260496497
  19. Cha, J. N.; Shimizu, K.; Zhou, Y.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D.; Morse, D. E. Proc. Natl. Acad. Sci. USA 1999, 96, 361 https://doi.org/10.1073/pnas.96.2.361
  20. Helmecke, O.; Hirsch, A.; Behrens, P.; Menzel, H. J. Coll. Interface Sci. 2008, 321, 44 https://doi.org/10.1016/j.jcis.2008.01.006
  21. Coffman, E. A.; Melechko, A. V.; Allison, D. P.; Simpson, M. L.; Doktycz, M. J. Langmuir 2004, 20, 8431 https://doi.org/10.1021/la048907o
  22. Brott, L. L.; Naik, R. R.; Pikas, D. J.; Kirkpatrick, S. M.; Tomlin, D. W.; Whitlock, P. W.; Clarson, S. J.; Stone, M. O. Nature 2001, 413, 291 https://doi.org/10.1038/35095031
  23. Yang, S. H.; Kang, K.; Choi, I. S. Chem. Asian J. 2008, 3, 2097 https://doi.org/10.1002/asia.200800185
  24. Kim, D. J.; Lee, K.-B.; Lee, T. G.; Shon, H. K.; Kim, W.-J.; Paik, H.-j.; Choi, I. S. Small 2005, 1, 992 https://doi.org/10.1002/smll.200400157
  25. Kim, D. J.; Lee, K. B.; Chi, Y. S.; Kim, W.-J.; Paik, H.-j.; Choi, I. S. Langmuir 2004, 20, 7904 https://doi.org/10.1021/la048657b
  26. Wu, J.-C.; Wang, Y.; Chen, C.-C.; Chang, Y.-C. Chem. Mater. 2008, 20, 6148 https://doi.org/10.1021/cm8017659
  27. Laugel, N.; Hemmerle, J.; Porcel, C.; Voegel, J.-C.; Schaaf, P.; Ball, V. Langmuir 2007, 23, 3706 https://doi.org/10.1021/la063052w
  28. Yang, S. H.; Choi, I. S. Chem. Asian J. 2009, 4, 382 https://doi.org/10.1002/asia.200800381
  29. Ariga, K.; Hill, J. P.; Ji, Q. Phys. Chem. Chem. Phys. 2007, 9, 2319 https://doi.org/10.1039/b700410a
  30. Hammond, P. T. Adv. Mater. 2004, 16, 1271 https://doi.org/10.1002/adma.200400760
  31. Kong, B.; Kim, Y.; Choi, I. S. Bull. Korean Chem. Soc. 2008, 29, 1843 https://doi.org/10.5012/bkcs.2008.29.9.1843
  32. Choi, J.; Lee, Y. J.; Kang, H.; Han, J. W.; Noh, J. Bull. Korean Chem. Soc. 2008, 29, 1229 https://doi.org/10.5012/bkcs.2008.29.6.1229
  33. Lu, J.; Zhang, J.; Xiao, C. J. Appl. Polym. Sci. 2007, 106, 1972 https://doi.org/10.1002/app.26732
  34. Mahdavi, H.; Haghani, E.; Malakian, B. Reac. Funct. Polym. 2006, 66, 1033 https://doi.org/10.1016/j.reactfunctpolym.2006.01.011
  35. Yang, G.; Zhang, L.; Feng, H. J. Membr. Sci. 1999, 161, 31 https://doi.org/10.1016/S0376-7388(99)00095-2
  36. Yang, J. C.; Jablonsky, M. J.; Mays, J. W. Polymer 2002, 43, 5125 https://doi.org/10.1016/S0032-3861(02)00390-7
  37. Su, Z.; Li, X.; Hsu, S. L. Macromolecules 1994, 27, 287 https://doi.org/10.1021/ma00079a042
  38. Orler, E. B.; Yontz, D. J.; Moore, R. B. Macromolecules 1993, 26, 5157 https://doi.org/10.1021/ma00071a027
  39. Rigdahl, M.; Eisenberg, A. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1641 https://doi.org/10.1002/pol.1981.180191013
  40. Morton, M.; Fetters, L. J. Rubber Chem. Technol. 1975, 48, 359 https://doi.org/10.5254/1.3547458
  41. Yang, S. H.; Park, J. H.; Cho, W. K.; Lee, H.-S.; Choi, I. S. Small 2009, 5, 1947-1951 https://doi.org/10.1002/smll.200900440
  42. Kang, S. M.; Lee, B. S.; Lee, S.-g.; Choi, I. S. Colloid Surf. A 2008, 313-314, 150

Cited by

  1. Formation of thiol-functionalized silica films by layer-by-layer self-assembly and biomimetic silicification vol.19, pp.5, 2011, https://doi.org/10.1007/s13233-011-0512-x
  2. The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices vol.4, pp.10, 2011, https://doi.org/10.1039/c0ee00306a
  3. Cytocompatible Encapsulation of Individual Chlorella Cells within Titanium Dioxide Shells by a Designed Catalytic Peptide vol.28, pp.4, 2012, https://doi.org/10.1021/la203667z
  4. Artificial Spores: Cytocompatible Encapsulation of Individual Living Cells within Thin, Tough Artificial Shells vol.9, pp.2, 2012, https://doi.org/10.1002/smll.201202174
  5. DNA-Templated Metallization for Formation of Porous and Hollow Silver-Shells vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.986
  6. Bio-Inspired Formation of Silica Thin Films: From Solid Substrates to Cellular Interfaces vol.2015, pp.27, 2015, https://doi.org/10.1002/ejic.201500308
  7. Hierarchically Branched Nanostructures in Biomimetic Silica Films, Controlled by Counteranion-Exchange vol.60, pp.6, 2016, https://doi.org/10.5012/jkcs.2016.60.6.399
  8. Thickness Control of Biomimetic Silica Thin Films: Grafting Density of Poly(2-(dimethylamino)ethyl methacrylate) Templates vol.31, pp.3, 2009, https://doi.org/10.5012/bkcs.2010.31.03.753
  9. Formation of Discrete Silica Microspheres with Cysteamine and Cetyltrimethylammonium Bromide vol.31, pp.7, 2009, https://doi.org/10.5012/bkcs.2010.31.7.1831
  10. Bioinspired Functionalization of Silica‐Encapsulated Yeast Cells vol.123, pp.27, 2011, https://doi.org/10.1002/ange.201102030
  11. Bioinspired Functionalization of Silica‐Encapsulated Yeast Cells vol.50, pp.27, 2011, https://doi.org/10.1002/anie.201102030
  12. Biomimetic silica nanostructures on the surface, controlled by polyvalent counteranions vol.23, pp.None, 2009, https://doi.org/10.1016/j.solidstatesciences.2013.06.004
  13. Formation of DNA-Silica Complexes with Deoxyguanosine Oligonucleotides vol.35, pp.1, 2009, https://doi.org/10.5012/bkcs.2014.35.1.21