Trait Variation and Molecular Characterization of Ds insertional rice lines

벼 Ds 삽입변이 계통의 특성변이 및 분자생물학적 특성

  • Received : 2008.01.11
  • Published : 2008.03.10

Abstract

The 1,874 rice lines were selected from 3,000 Ds insertional mutant pool by Basta herbicide treatment and were surveyed for trait variation and molecular characteristics of genes knocked out by Ds insertion. Compared with "Donjin", an original japonica cultivar used for transformation, Ds insertion mutant pool showed large variation in major agronomic traits including tiller, panicle, and heading etc. Southern blot analysis demonstrated that these lines on the average had two Ds copies in Donjin genome, resulting in 38.4% of one copy, 32.5% of two copies, 16.7% of three copies, and 11.3% of over four copies. GUS analysis showed that 3.9% of lines (73/1,860) had tissue-specific expression in leaves, nodal parts, floral organs such as stigma and pollen, and roots. Data set obtained from agricultural trait variation and molecular characteristics for individual Ds insertional lines would provide researchers with more information for understanding the function of unknown rice genes controlling economically important traits.

1. Ds 삽입변이체 계통으로부터 제초제 저항성 1,874계통을 선발하고 농업적 주요 특성으로서 출수일수, 간장, 수수, 수장, 엽장 등 5가지 형질에 대하여 조사한 바, 조사된 5가지 형질에 대하여 원품종인 동진벼에 비하여 매우 다양한 변이폭을 보여주었다. 2. 농업적 유용성과 관련된 수장이 길고, 조기출수, 수수가 많은 변이체 뿐만 아니라 형태학적 변이를 보이는 twin seedling, dwarf, early heading, strip albino, liguleless 등 변이체가 다수 발견됨으로서 육종적 이용 및 유전자 기능해석을 위한 유용한 집단으로서 유용성을 보여주었다. 3. 서던분석 결과 벼 게놈상에서 Ds는 평균 2 copy로 전이되었으며 조직부위별로 GUS의 발현을 조사한 결과 잎, 뿌리 및 화기관등에서 약 3.9%가 발현되었다. 이 삽입변이체에서 나타난 다양한 변이형질의 주요 농업적 특성과 GUS 발현의 재현성을 위해 다음 세대의 전개를 통한 후대분석이 필요하다.

Keywords

Acknowledgement

Supported by : 농업생명공학연구원

References

  1. An G, Lee S, Kim SH, Kim SR. 2005. Molecular genetics using T-DNA in rice. Plant Cell Physiol 46:14-22 https://doi.org/10.1093/pcp/pci502
  2. Bogue MA, Grubb SC, Maddatu TP, and Bult CJ. 2007. Mouse Phenome Database (MPD). Nucleic Acids Research 35:643-649 https://doi.org/10.1093/nar/gkl1049
  3. Chern CG, Fan MJ, Yu SM, Hour AL, Lu PC, Lin YC, Wei FJ, Huang SC, Chen S, Lai MH, Tseng CS, Yen HM, Jwo WS, Wu CC, Yang TL, Li LS, Kuo YC, Li SM, Li CP, Wey CK, Trisiriroj A, Lee HF, and Hsing YI. 2007. A rice phenomics study-phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Mol Biol. in press
  4. Chin HG, Choe MS, Lee SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, and C-D Han. 1999. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19:615-624 https://doi.org/10.1046/j.1365-313X.1999.00561.x
  5. Eun MY, et al. 2007. 벼 유전체 삽입변이체 육성 분석연구. 과학기술부
  6. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, and Briggs S. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92-100 https://doi.org/10.1126/science.1068275
  7. Greco R, Ouwerkerk PB, Taal AJ, Favalli C, Beguiristain T, Puigdomenech P, Colombo L, Hoge JH, and A. Pereira. 2001. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol. Biol. 46:215-227 https://doi.org/10.1023/A:1010607318694
  8. Hirochika H, Sugimoto K, Otski Y, Tsugawa H, Kanda M. 1996. Retro-transposones of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93:7783-7788
  9. Hirochika H. 1997. Retrotransposons of rice : their regulation and use for genome analysis. Plant Mol. Biol. 35:231-240 https://doi.org/10.1023/A:1005774705893
  10. Hoshikawa K. 1989. The growing rice plant. Nobunkyo, Tokyo
  11. Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW, Wang YC, Huang WL, Ko SS, Chen S, Chen JL, Chung CI, Lin YC, Hour AL, Wang YW, Chang YC, Tsai MW, Lin YS, Chen YC, Yen HM, Li CP, Wey CK, Tseng CS, Lai MH, Huang SC, Chen LJ, Yu SM. 2007. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63:351-364 https://doi.org/10.1007/s11103-006-9093-z
  12. Izawa T, Ohnishi T, Nakano T, Ishida N, Enoki H, Hashimoto H, Itoh K, Terada R, Wu C, Miyazaki C, Endo T, Iida S and K Shimamoto. 1997. Transposon tagging in rice. Plant Mol. Biol. 35:219-229 https://doi.org/10.1023/A:1005769605026
  13. Jeon JS, Lee S, Jung KH, Jun SH, Jeong D-, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI and An G. 2000. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22:561-570 https://doi.org/10.1046/j.1365-313x.2000.00767.x
  14. Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K and G An. 2002. T-DNA Insertional mutagenesis for activation tagging in rice. Plant Physiol. 130:1636-1644 https://doi.org/10.1104/pp.014357
  15. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR and SR Wessler. 2003. An active DNA transposon family in rice. Nature 421:163-167 https://doi.org/10.1038/nature01214
  16. Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, Park JY, Lee EJ, Kim MJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi G, Nam MH, Cha YS, Yun DW, Eun MY, Han CD. 2004. Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J 39:252-263 https://doi.org/10.1111/j.1365-313X.2004.02116.x
  17. Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S. 2004. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301-314 https://doi.org/10.1046/j.1365-313X.2003.01948.x
  18. Koromori T, Wada T, Kamiya A, Yuguchi M, Yokouchi T, Imura Y, Takabe H, Sakurai T, Akiyama K, Hirayama T, Okada K, and Shinozaki K. 2006. A trial of phenome analysis using 4000 Ds-insertional mutants in gene-coding regions of Arabidopsis. Plant J. 47:640-651 https://doi.org/10.1111/j.1365-313X.2006.02808.x
  19. Lee J, Park JJ, Kim SL, Yim J and An J. 2007. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule and lamina joint. Plant Mol Biol. in press
  20. Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, and T Tanisaka. 2003. Mobilization of a transposon in the rice genome. Nature 421:170-172
  21. Park SH, Jun NS, Kim CM, Oh TY, Huang J, Xuan Y, Park SJ, Je BI, Piao HL, Park SH, Cha YS, Ahn BO, Ji HS, Lee MC, Suh SC, Nam MH, Eun MY, Yi G, Yun DW, and Han CD. 2007. Analysis of gene-trap Ds rice populations in Korea. in press
  22. Zhang JZ and Somerville. 1997. Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. PNAS 94:7349-7355 https://doi.org/10.1073/pnas.94.14.7349
  23. Yu J, Hu, S, Wang J, Wong GK., Li S., Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J., Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li, T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai, W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao Ye, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li, G, Liu S, Tao M, Wang J, Zhu L, Yuan L, and Yang H. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296:79-92 https://doi.org/10.1126/science.1068037