Ionic Equilibria in Mixed Solutions of Cuprous and Cupric Chloride

염화 제1구리와 제2구리 혼합용액의 이온평형

  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Nicol, M.J. (Extractive Metallurgy, Murdoch University)
  • 이만승 (목포대학교 공과대학 신소재공학과) ;
  • Received : 2007.09.13
  • Published : 2008.01.22

Abstract

The ionic equilibira in mixed solutions of cuprous and cupric chloride were analyzed by considering chemical equilibria, mass and charge balance equations. The activity coefficients of solutes were calculated by using Bromley equation. Required thermodynamic constants and interaction parameters were evaluated from the data reported in the literature. The effect of NaCl and CuCl concentrations on the pH and potential of the mixed solutions was explained in terms of the variation in the concentration of solutes and in the activity of hydrogen ion. The calculated pH values of the mixed solutions agreed well with the measured values. However, the calculated values for the potential of the mixed solutions were lower than the measured values, indicating the necessity of considering the complex formation between cuprous and chloride ion, such as $Cu^2Cl{_4}^{2-}$ and $Cu_3Cl{_6}^{3-}$.

Keywords

References

  1. M. M. Antonijeviæ, G.D. Bogdanoviæ, Hydrometallurgy 73, 245 (2004). https://doi.org/10.1016/j.hydromet.2003.11.003
  2. F. Carranza, N. Iglesias, A. Mazuelos, I. Palencia, and R. Romero, Hydrometallurgy 71, 413 (2004). https://doi.org/10.1016/S0304-386X(03)00119-1
  3. I. Palencia, R. Romero, A. Mazuelos, and F. Carranza, Hydrometallurgy 66, 85 (2002). https://doi.org/10.1016/S0304-386X(02)00095-6
  4. M. Lundström, J. Aromaa, O. Forsén, O. Hyvarinen, and M.H. Barker, Hydrometallurgy 77, 89 (2005). https://doi.org/10.1016/j.hydromet.2004.10.013
  5. R. T. Kimura, P. A., Haunschild, and K. C. Liddell, Met. Trans. B, 15B, 213 (1984).
  6. G. W. Mcdonald, T. J. Udovic, J. A. Dumesic, and S. H. Langer, Hydrometallurgy 13, 125 (1984). https://doi.org/10.1016/0304-386X(84)90022-7
  7. G. W. Mcdonald, and S. H. Langer, Metallurgical Transactions B, 14B, 559 (1983).
  8. R. von Bonsdorff, N. Järvenpää, J. Aromaa, O. Forsén, and O. Hyvärinen, M. H. Barker, Hydrometallurgy 77, 155 (2005). https://doi.org/10.1016/j.hydromet.2004.10.018
  9. J. F. Zemaitis, Jr., D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics, AIChE DIPPR, pp. 211-212, New York (1986).
  10. M. S. Lee, Y. J. Oh, J. Kor. Inst. Met. & Mater. 42, 767 (2004).
  11. M. Wang, and Y. Zhang, and M. Muhammed, Hydrometallurgy 45, 53 (1997). https://doi.org/10.1016/S0304-386X(96)00074-6