Application of Nanoparticles for Materials Recognition using Peptide Phage Display Technique- Part I: Preliminary study using LaPO4 and TiO2 nanoparticles

Peptide phage display 기술을 이용한 나노입자의 materials recognition 응용 - Part I: LaPO4 및 TiO2 나노입자를 이용한 기초연구

  • Lee, Chang-Woo (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Kim, Min-Jung (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Standaert, R. (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory) ;
  • Kim, Seyeon (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory) ;
  • Owens, E. (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory) ;
  • Yan, Jun (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory) ;
  • Choa, Yong-Ho (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Doktycz, M. (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory) ;
  • Lee, Jai-Sung (Division of Materials and Chemical Engineering, Hanyang University)
  • Received : 2007.11.19
  • Published : 2008.01.22

Abstract

Peptides with specific sequences against $LaPO_4$ and $TiO_2$ nanoparticles were discovered through peptide phage display technique as an application to biomolecular recognition of inorganic materials. Sequencing results showed that a motif consisting of serine and proline was commonly expressed in specific sequences. It was postulated that serine directly bound to nanoparticles using its terminal hydroxyl (OH) group. In this sense, oxygen atom seemed to work as a ligand to metal ions and hydrogen atom as a H-bond donor, was thought to bind to the oxygen atoms or the hydroxyl groups on particle surface. Also, it was expected that proline assists serine to make an ideal van der Waals contact between serine and nanoparticles, which optimizes the binding of peptide onto surface.

Keywords

References

  1. J. S. Lee, S. T. Oh, J. H. Yu, Trends Met. Mater. Eng. 14, 24 (2001).
  2. A. P. Alivisatos, Science 271. 933 (1996). https://doi.org/10.1126/science.271.5251.933
  3. R. C. O' Handley, Modern Magnetic Materials-Principles and Applications, John Wiley & Sons, Inc., NY, U.S. (2001).
  4. S. J. Oh, C. J. Choi, S. J. Kwon, S. H. Jin and B. K. Kim, J. Kor. Inst. Met. & Mater. 41, 432 (2003).
  5. R. R. Chianelli and J. R. Dahn, J. Electrochem. Soc. 144, 2045 (1994). https://doi.org/10.1149/1.1837740
  6. P. Zhu, Y. Masuda, K. Koumoto, Biomater. 25, 3915 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.022
  7. X. Liu, P. K. Chu, C. Ding, Mater. Sci. Eng. R, 47, 49 (2004). https://doi.org/10.1016/j.mser.2004.11.001
  8. J. Siepmann, N. Faisant, J. Akiki, J. Richard, J. P. Benoit, J. Controlled Release 96, 123 (2004). https://doi.org/10.1016/j.jconrel.2004.01.011
  9. M. Brzeska, M. Panhorst, P. B. Kamp, J. Schotter, G. Reiss, A. Phler, A. Becker, H. Brckl, J. Biotechnol. 112, 25 (2004). https://doi.org/10.1016/j.jbiotec.2004.04.018
  10. J. -F. Chen, H. -M. Ding, J. -X. Wang, L. Shao, Biomater. 24, 723 (2004).
  11. F. Meiser, C. Cortez, F. Caruso, Angew. Chem. Int. Ed. 43, 5954 (2004). https://doi.org/10.1002/anie.200460856
  12. S. G. Grancharov, H. Zeng, S. Sun, S. X. Wang, S. O'Brien, C. B. Murray, J. R. Kirtley, and G. A. Held, J. Phys. Chem. 109, 13030 (2005). https://doi.org/10.1021/jp051098c
  13. J. L. Arias, V. Gallardo, S. A. Gmez-Lopera, R. C. Plaza, A. V. Delgado, J. Controlled Release 77, 309 (2001). https://doi.org/10.1016/S0168-3659(01)00519-3
  14. M. Shimomura, T. Abe, Y. Sato, K. Oshima, T. Yamauchi, S. Miyauchi, Polymer 44, 3877 (2003). https://doi.org/10.1016/S0032-3861(03)00327-6
  15. D. Tanyola, A. R. Zdural, React. Funct. Polymer 43, 2 (2000).
  16. R. R. Naik, S. E. Jones, C. J. Joseph, C. McAuliffe, R. A.Vaia, and M. O. Stone, Adv. Func. Mater. 14, 25 (2004). https://doi.org/10.1002/adfm.200304501
  17. K. K. Lee, Y. C. Kang, I. W. Zeon, K. Y. Jung, and H. D. Park, Korean J. Mater. Res., 12, 761 (2002). https://doi.org/10.3740/MRSK.2002.12.9.761
  18. C. Cui, H. Liu, Y. Li, J. Sun, R. Wang, S. Liu, and A. L. Greer, Mater. Lett. 59, 3144 (2005). https://doi.org/10.1016/j.matlet.2005.05.037
  19. Y. Fujishiro, H. Ito, T. Sato, A. Okuwaki, J. Alloys. Compounds 252, 103 (1997). https://doi.org/10.1016/S0925-8388(96)02612-6
  20. G. Coln, M. C. Hidalgo and J. A. Navio, Catal. Today, 76. 91 (2002). https://doi.org/10.1016/S0920-5861(02)00207-9
  21. Tech. Bull., Ph. D.TM Phage Display Peptide Library Kits, New England Biolabs, Inc. (2004).
  22. S. F. Parmley and G. P. Smith, Gene 73, 305 (1988). https://doi.org/10.1016/0378-1119(88)90495-7
  23. Powder diffraction file, card 46-1326. JDPDS-ICDD, Swarthmore, PA (1997).
  24. Powder diffraction file, card 21-1272. JDPDS-ICDD, Swarthmore, PA (1997).
  25. U. Rambabu and S. Buddhudu, Opt. Mater 17, 401 (2001). https://doi.org/10.1016/S0925-3467(00)00103-8
  26. H. S. Park, D. H. Kim, S. J. Kim and K. S. Lee, J. Kor. Inst. Met. & Mater. 42, 918 (2004).
  27. http://webhost.bridgew.edu/fgorga/proteins/aminoacids.htm
  28. D. Siodłak, M. A. Broda, B. Rzeszotarska, J. Molecular Structure (Theochem) 668, 75 (2004). https://doi.org/10.1016/j.theochem.2003.10.018
  29. S. J. Grabowski, W. A. Sokalski, J. Leszczynski, Chem.Phys 337, 68 (2007). https://doi.org/10.1016/j.chemphys.2007.06.042