Contact Resistance and Thermal Cycling Reliability of the Flip-Chip Joints Processed with Cu-Sn Mushroom Bumps

Cu-Sn 머쉬룸 범프를 이용한 플립칩 접속부의 접속저항과 열 싸이클링 신뢰성

  • Lim, Su-Kyum (Materials Science and Engineering, Hongik University) ;
  • Choi, Jin-Won (Samsung Electro-Mechanics, Corporate R&D Institute) ;
  • Kim, Young-Ho (Materials Science and Engineering, Hanyang University) ;
  • Oh, Tae-Sung (Materials Science and Engineering, Hongik University)
  • Received : 2008.07.17
  • Published : 2008.09.25

Abstract

Flip-chip bonding using Cu-Sn mushroom bumps composed of Cu pillar and Sn cap was accomplished, and the contact resistance and the thermal cycling reliability of the Cu-Sn mushroom bump joints were compared with those of the Sn planar bump joints. With flip-chip process at a same bonding stress, both the Cu-Sn mushroom bump joints and the Sn planar bump joints exhibited an almost identical average contact resistance. With increasing a bonding stress from 32 MPa to 44MPa, the average contact resistances of the Cu-Sn mushroom bump joints and the Sn planar bump joints became reduced from $30m{\Omega}/bump$ to $25m{\Omega}/bump$ due to heavier plastic deformation of the bumps. The Cu-Sn mushroom bump joints exhibited a superior thermal cycling reliability to that of the Sn planar bump joints at a bonding stress of 32 MPa. While the contact resistance characteristics of the Cu-Sn mushroom bump joints were not deteriorated even after 1000 thermal cycles ranging between $-40^{\circ}C$ and $80^{\circ}C$, the contact resistance of the Sn planar bump joints substantially increased with thermal cycling.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. J. W. Wan, W. J. Zhang, and D. J. Bergstrom, J. Microelectron. Reliab. 38, 67 (2007) https://doi.org/10.1016/j.mejo.2006.09.017
  2. T. Braun, K. F. Becker, M. Koch, V. Bader, R. Aschenbrenner, and H. Reichl, J. Microelectron. Reliab. 46, 144 (2006) https://doi.org/10.1016/j.microrel.2005.06.004
  3. L. Han and J. Zhong, J. Microelectron. Eng. 85, 1568 (2008) https://doi.org/10.1016/j.mee.2008.02.017
  4. Y. N. Kim, J. M. Koo, S. K. Park, and S. B. Jung, J. Korean Inst. Met. Mater. 46, 33 (2008)
  5. J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. Bae Park, J. Korean Inst. Met. Mater. 46, 310 (2008)
  6. U. B. Kang and Y. H. Kim, Proc. 3rd Int. Symp. Electron. Mater. & Packag. p.12 (2001)
  7. U. B. Kang and Y. H. Kim, IEEE Trans. Comp. Packag. Technol. 27, 253 (2004). https://doi.org/10.1109/TCAPT.2004.828585
  8. H. Kristiansen and J. Liu, IEEE Trans. Comp. Packag. Manufact. Technol. A 21, 208 (1998) https://doi.org/10.1109/95.705466
  9. Y. P. Wu, M. O. Alam, Y. C. Chan, B. Y. Wu, Microelectron. Reliab. 44, 295 (2004) https://doi.org/10.1016/S0026-2714(03)00214-2
  10. M. J. Rizvi, H. Lu, C. Bailey, Y. C. Chan, M. Y. Lee, and C. H. Pang, J. Microelectron. Engineer. 85, 238 (2008) https://doi.org/10.1016/j.mee.2007.05.045
  11. M. Mori, Y. Kizaki, M. Saito, and A. Hongu, IEEE Trans. Comp. Hybrids, Manufact. Technol. 16, 852 (1993) https://doi.org/10.1109/33.273684
  12. L. K. Teh, E. Anto, C. C. Wong, S. G. Mhaisalkar, E. H. Wong, P. S. Teo, and Z. Chen, Thin Solid Films 462, 446 (2004) https://doi.org/10.1016/j.tsf.2004.05.077
  13. K. Y. Lee, Y. H. Lee, Y. H. Kim, and T. S. Oh, J. Korean Inst. Met. Mater. 43, 1 (2005)
  14. L. K. The, C. C. Wong, S, Mhaisalkar, K. Ong, P. S. Teo, and E. H. Wong, J. Electron. Mater. 33, 271 (2004) https://doi.org/10.1007/s11664-004-0132-8
  15. M. J. Yim, J. S. Hwang, W. Kwon, K. W. Jang, and K. W. Paik, IEEE Trans. Electronics Packag. Manufact. 26, 150 (2003) https://doi.org/10.1109/TEPM.2003.817715
  16. Y. W. Chiu, Y.C. Chan, S.M. Lui, Microelectron. Reliab. 42, 1945 (2002) https://doi.org/10.1016/S0026-2714(02)00097-5
  17. Y. T. Hsieh, Proc. Inter. Symp. Electron. Mater. Packag. (2002) p.157
  18. JEDEC Specification, Coplanarity Test for Surface-Mount Semiconductor Devices, JESD22-B108A
  19. C. W. Ju, K. H. Pack, H. T. Lee and Y. C. Hyun, J. Korean Phys. Soc. 42, S574 (2003)
  20. J. W. Nah and K. W. Paik, Proc. Electron. Comp. Technol. Conf. (2001) p.790
  21. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., John Wiley & Sons, Inc., New York (1998) p.10
  22. K. N. Tu, Mater. Chemistry & Physics 46, 217 (1996) https://doi.org/10.1016/S0254-0584(97)80016-8