Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt

고온 용융염계에서 Ni-Base 초합금의 부식거동

  • Received : 2008.06.12
  • Published : 2008.09.25

Abstract

The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. R. A. Rapp, Corros. Sci. 44, 209 (2002) https://doi.org/10.1016/S0010-938X(01)00057-9
  2. M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mantyla, Corros. Sci. 46, 1311 (2004) https://doi.org/10.1016/j.corsci.2003.09.026
  3. J. G. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafane, V. M. Salinas-Bravo, and J. Porcayo-Calderon, Mater. Sci. Eng. A, 435-436, 258 (2006) https://doi.org/10.1016/j.msea.2006.06.138
  4. B. Zhu, and G. Lindbergh, Electrochim. Acta, 46, 2593 (2001) https://doi.org/10.1016/S0013-4686(01)00471-6
  5. S. Mitsushima, N. Kamiya, and K. I. Ota, J. Electrochem. Soc. 137, 2713 (1990) https://doi.org/10.1149/1.2087031
  6. T. Ishitsuka, and K. Nose, Corros. Sci. 44, 247 (2002) https://doi.org/10.1016/S0010-938X(01)00059-2
  7. B. P. Mohanty, and D. A. Shores, Corros. Sci. 46, 2893 (2004) https://doi.org/10.1016/j.corsci.2004.04.013
  8. F. Colom, and A. Bodalo, Corros, Sci. 12, 73 (1972)
  9. A. Ruh, and M. Spiegel, Corros. Sci. 48, 679 (2006) https://doi.org/10.1016/j.corsci.2005.02.015
  10. Tz. Tzvetkoff, and J. Kolchakov, Mater. Chem. Phys. 87, 201 (2004) https://doi.org/10.1016/j.matchemphys.2004.05.039
  11. J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell, and A. G. Raraz, Oxid. Met. 55, 1 (2001) https://doi.org/10.1023/A:1010333407304
  12. E. J. Karell, K. V. Gourishankar, J. L. Smith, L. S. Chow, and L. Redey, Nucl. Technol. 136, 342 (2001) https://doi.org/10.13182/NT136-342
  13. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980)
  14. S. H. Cho, C. S. Seo, G. S. Yoon, H. S. Park and S. W. Park, J. Kor. Inst. Met. & Mater. 44, 707 (2006)
  15. H. Izuta and Y. Komura, J. Jpn. Inst. Met. 58, 1196 (1994) https://doi.org/10.2320/jinstmet1952.58.10_1196
  16. G. C. Wood and F. H. Stott, Mater. Sci. Tech. 3, 519 (1987) https://doi.org/10.1080/02670836.1987.11782263
  17. G. C. Wood, Corros. Sci. 2, 173 (1962) https://doi.org/10.1016/0010-938X(62)90019-7
  18. F. H. Stott, G. C. Wood and J. Stringer, Oxid. Met. 32, 113 (1989)
  19. Y. Harada, Jpn. Therm. Spraying Soc. 33, 128 (1996)
  20. S. H. Park, Y. D. Lee and Y. Y. Lee, J. Kor. Inst. Met. & Mater., 33, 1323 (1995)
  21. M. Skashita and N. Sato, Corros. Sci., 17, 473 (1977)
  22. C. R. Crayton and Y. C. Lu, Corros. Sci., 29, 7 (1989)
  23. F. H. Stott and F. I. Wei, Mater. Sci. Tech., 5, 1140 (1989) https://doi.org/10.1179/026708389790340969
  24. G. C. Allen and R. K. Wild, J. Electron. Spectroscopy 5, 409 (1974) https://doi.org/10.1016/0368-2048(74)85027-9
  25. S. Ling, T. A. Rahmel and R. Petkovic-Luton, Oxid. Met. 40, 180 (1993)