플립칩 Sn-3.5Ag 솔더범프의 Electromigration과 Thermomigration 특성

Electromigration and Thermomigration Characteristics in Flip Chip Sn-3.5Ag Solder Bump

  • Lee, Jang-Hee (Andong National University, School of Materials Science and Engineering) ;
  • Lim, Gi-Tae (Andong National University, School of Materials Science and Engineering) ;
  • Yang, Seung-Taek (Package R&D Division, Hynix Semiconductor Inc.) ;
  • Suh, Min-Suk (Package R&D Division, Hynix Semiconductor Inc.) ;
  • Chung, Qwan-Ho (Package R&D Division, Hynix Semiconductor Inc) ;
  • Byun, Kwang-Yoo (Package R&D Division, Hynix Semiconductor Inc.) ;
  • Park, Young-Bae (Andong National University, School of Materials Science and Engineering)
  • 투고 : 2007.12.12
  • 발행 : 2008.05.22

초록

Electromigration test of flip chip solder bump is performed at $140^{\circ}C$ C and $4.6{\times}10^4A/cm^2$ conditions in order to compare electromigration with thermomigration behaviors by using electroplated Sn-3.5Ag solder bump with Cu under-bump-metallurgy. As a result of measuring resistance with stressing time, failure mechanism of solder bump was evaluated to have four steps by the fail time. Discrete steps of resistance change during electromigration test are directly compared with microstructural evolution of cross-sectioned solder bump at each step. Thermal gradient in solder bump is very high and the contribution of thermomigration to atomic flux is comparable with pure electromigration effect.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. T. Y. Lee and K. N. Tu, J. Appl. Phys. 89, 3189 (2001) https://doi.org/10.1063/1.1342023
  2. W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys, 94, p.5665 (2003) https://doi.org/10.1063/1.1616993
  3. J. R. Lloyd, J. Phys. D. Appl. Phys. 32, 109(1999)
  4. I. A. Blech, J. Appl. Phys. 47, 1203 (1976) https://doi.org/10.1063/1.322842
  5. I. A. Blech and K. L. Tai, Appl. Phys. Lett. 30, 387 (1977) https://doi.org/10.1063/1.89414
  6. Annie T. Huang and K. N. Tu, J. Appl. Phys. 100, 033512 (2006) https://doi.org/10.1063/1.2227621
  7. K. L. Lin and S. M. Kuo, Proc. 56th Electronic Components and Technology Conf, San Diego, FL, p.667, IEEE (2006)
  8. H. Ye, C. Basaran, and D. Hokins, Appl. Phys. Lett. 82, 1045(2003) https://doi.org/10.1063/1.1554775
  9. H. Y. Hsiao and C. Chen, Appl. Phys. Lett. 90, 152105 (2007) https://doi.org/10.1063/1.2721136
  10. F. Y. Ouyang, A. T. Huang, and K. N. Tu, Proc. 56th Electronic Components and Technology Conf, p.1974, IEEE, San Diego, FL (2006)
  11. Everett C. C. Yeh, W. J. choi, and K. N. Tu, Appl. Phys. Lett. 80. p.580 (2002) https://doi.org/10.1063/1.1432443
  12. H. Gan and K. N. Tu, J. Appl. Phys. 97, 063514 (2005) https://doi.org/10.1063/1.1861151
  13. K. N. Chiang, Chien Chen Lee, and Chang Chun Lee, Appl. Phys. Lett. 88, 072102(2006) https://doi.org/10.1063/1.2173710
  14. Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao, K. N. Tu, Acta Mater. 53, 2029 (2005) https://doi.org/10.1016/j.actamat.2005.01.014