초록
A new automatic small target detection and tracking algorithm for the real-time IR surveillance system is presented. The automatic target detection and tracking algorithm of the real-time systems, requires low complexity and robust tracking performance in the cluttered environment. Linear-array and parallel-scan IR systems usually suffer from severe scan noise caused by the detector non-uniformity. After the spatial filtering and thresholding, this scan noise still remains as high amplitude clutter which degrades the target detection rate and tracking performance. In this paper, we propose a new feature which consists of area and validity information of a measurement. By adopting this feature to the measurements selection and track confirmation, we can increase the target detection rate and reduce both the track loss rate and false track rate. From the experimental results, we can validate the feasibility of the proposed method in the noisy IR images.