Effects of Defatted Soybean Grits on Lipid Metabolism in Rats Fed with High-fat Diet

탈지대두 grits가 고지방식이를 투여한 흰쥐의 지질대사에 미치는 영향

  • Kim, Hyun-Jeong (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Ji, Young-Ju (Department of Food and Technology, Keimyung University) ;
  • Lee, Sung-Gyu (Department of Food and Technology, Keimyung University) ;
  • Choi, Jun-Hyeok (Department of Food and Technology, Keimyung University) ;
  • Lee, Eun-Ju (Bio Research Institute, NUC Electronics Co. Ltd.) ;
  • Jeong, Hyun-Jin (Bio Research Institute, NUC Electronics Co. Ltd.) ;
  • Lee, Sam-Pin (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Lee, In-Seon (Department of Food and Technology, Keimyung University)
  • 김현정 (계명대학교 전통미생물자원 개발 및 산업화 연구센터) ;
  • 지영주 (계명대학교 식품가공학과) ;
  • 이성규 (계명대학교 식품가공학과) ;
  • 최준혁 (계명대학교 식품가공학과) ;
  • 이은주 ((주)엔유씨전자 바이오 연구소) ;
  • 정현진 ((주)엔유씨전자 바이오 연구소) ;
  • 이삼빈 (계명대학교 전통미생물자원 개발 및 산업화 연구센터) ;
  • 이인선 (계명대학교 식품가공학과)
  • Published : 2008.10.31

Abstract

The principal objective of this study was to determine the effects of defatted soybean grits (DSG) on body lipidmetabolism with 4 weeks of feeding on a high-fat diet. The rats were divided into the following 4 groups: control group (Con), control group treated with 20% DSG (C20D), high-fat group (HF), and high-fat group treated with 20% DSG (HF20D). The plasma total cholesterol and LDL-cholesterol concentrations were significantly lower in the HF20D group than in the HF group. On the other hand, the DSG supplement resulted in a significant increase in plasma HDL-cholesterol levels. The DSG supplement reduced the hepatic total lipid, total cholesterol, and triglyceride contents as compared to what was observed in the HF diet groups. In addition, the fecal total cholesterol and triglyceride contents increased in the DSG treatment groups. The hepatic HMG-CoA reductase activities were demonstrated to be significantly lower in the HF20D group than in the HF group. These results showed that the DSG powder lowered plasma cholesterol levels, tissue lipid contents, and cholesterol accumulation in the rats.

DSG가 고지방식이를 급여한 흰쥐의 체내 지질대사 개선에 미치는 영향을 살펴보고자, 기본식이군, DSG 첨가군, 고지방식이군 그리고 고지방식이와 DSG 첨가군으로 각각 나누어 4주간 사육하였다. 그 결과, 혈장 내 총 콜레스테롤, LDL-콜레스테롤 함량은 고지방식이군에서 증가하였다가 고지방식이와 DSG 첨가군에서 유의적으로 감소하였고, HDL-콜레스테롤 함량은 고지방식이군에서 감소되었다가 고지방식이와 DSG 첨가군에서 유의적인 증가를 보였다. 간 조직 내의 총 지질, 총 콜레스테롤 및 중성지질 함량은 DSG 투여로 인해서 고지방식이군에 비해 감소되었고, 분변 내의 콜레스테롤 및 중성지질 배설량은 DSG 투여로 인해서 고지방식이군에 비해 증가하였다. 또한 간 내 HMG-CoA reductase 활성은 고지방식이군에서 증가되었다가, 고지방식이와 DSG 첨가군에서 유의성 있게 감소되었다. 따라서 DSG는 혈중 콜레스테롤 함량, 조직 내의 지질 및 콜레스테롤 축적을 감소시켜 체내 콜레스테롤 개선에 효과적인 것으로 생각된다.

Keywords

References

  1. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol. 81: 7B-12B (1998) https://doi.org/10.1016/S0002-9149(97)00797-2
  2. Fernandez ML, Mcnamara DJ. Regulation of cholesterol and lipolipoprotein metabolism in guinea pigs mediated by dietary fat quality and quantity. J. Nutr. 121: 934-943 (1991) https://doi.org/10.1093/jn/121.7.934
  3. Wang W, de Mejia EG. A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr. Rev. Food Sci. F. 4: 63-78 (2005) https://doi.org/10.1111/j.1541-4337.2005.tb00075.x
  4. Potter SM. Overview of proposed mechanisms for the hypocholesterolemic effect of soy. J. Nutr. 125: 606-611 (1995)
  5. Liyange R, Han KH, Watanabe S, Shimada K, Sekikawa M, Ohiba K, Tokuji Y, Ohnishi M, Shibyma S, Nakamori T, Fukushima M. Potato and soy peptide diets modulate lipid metabolism in rats. Biosci. Biotech. Bioch. 72: 943-950 (2008) https://doi.org/10.1271/bbb.70593
  6. Wilson TA, Orthoefer F, Nicolosi RJ. Soy protein concentrate lowers serum high-density lipoprotein cholesterol concentrations compared with casein in ovariectomized rats fed a low-fat, cholesterol- free diet. Nutr. Res. 27: 417-422 (2007) https://doi.org/10.1016/j.nutres.2007.04.015
  7. Velasquez MT, Bhathena SJ. Role of dietary soy protein in obesity. Int. J. Med. Sci. 4: 72-82 (2007)
  8. Han YH, Park SK, Kim HY. Effect of soy protein hydrolyzate on lipid metabolism and antioxidant activity in the rat. Korean J. Nutr. 41: 119-126 (2008)
  9. Zhong F, Liu J, Ma J, Shoemaker CF. Preparation of hypocholesterol peptides rom soy protein and their hypocholesterolemic effect in mice. Food Res. Int. 40: 661-667 (2007) https://doi.org/10.1016/j.foodres.2006.11.011
  10. Yoon HH, Jeon EJ. Functional properties of soy protein isolate from heat treated soybean. Korean J. Food Sci. Technol. 36: 28- 43 (2004)
  11. Gibbs BF, Zougman A, Masse R, Mulligan C. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res. Int. 37: 123-131 (2004) https://doi.org/10.1016/j.foodres.2003.09.010
  12. Shin JH, Lee SK, Sim JH, Kim SK, Baek YJ. The change of rheological properties of nutritional beverage base by the soy protein isolate. Korean J. Food Sci. Technol. 31: 638-643 (1999)
  13. Bainy EM, Tosh SM, Corredig M, Poysa V, Woodrow L. Varietal differences of carbohydrates in defatted soybean flour and soy protein isolate by-products. Carbohyd. Polym. 72: 664-672 (2008) https://doi.org/10.1016/j.carbpol.2007.10.008
  14. AOAC. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists. Washington DC, USA. pp. 615-656 (2000)
  15. Folch J, Lees M, Sloan-Stanley GH. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509 (1957)
  16. Hulcher FH, Oleson WH. Simplified spectrophotometric assay for microsomal 3-hydroxyl-3-methylglutaryl-CoA reductase by measurement of coenzyme A. J. Lipid Res. 14: 625-631 (1973)
  17. Lowry OH, Rosebrough NH, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  18. Lee HJ. Effects of dietary casein, soy protein and mixed protein on body lipid components of rats. MS Thesis. Sung-shin Women's University, Seoul, Korea (1986)
  19. Demonty I, Lamarche B, Deshaies Y, Jacques H. Role of soy isoflavones in the hypotriglyceridemic effect of soy protein in the rat. J. Nutr. Biochem. 13: 671-677 (2002) https://doi.org/10.1016/S0955-2863(02)00214-0
  20. Kim MJ, Lee MK, Jang JY, Kim DG. Effect of protein in dietinduced hypercholestemia rats. Korean J. Food Nutr. 10: 246-253 (1997)
  21. Chen JR, Chiou SF, Suetsuna K, Yang HY, Yang SC. Lipid metabolism in hypocholesterolemic rats affected by feeding cholesterol- free diets containing different amounts of non dialyzed soybean protein fraction. Nutrition. 19: 676-680 (2003) https://doi.org/10.1016/S0899-9007(03)00072-8
  22. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am. J. Clin. Nutr. 68: 1375s-1379s (1998) https://doi.org/10.1093/ajcn/68.6.1375S
  23. Fujioka T, Nara F, Tsujita Y, Fukushige J, Fukami M, Kuroda M. The mechanism of lack of hypocholesterolemic effects of pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor in rats. Biochim. Biophys. Acta 1254: 7-12 (1995) https://doi.org/10.1016/0005-2760(94)00154-Q
  24. Terpstra AH, Van Tintelen G, West CE. The hypocholesterolemic effects of dietary soy protein in rats. J. Nutr. 112: 810-817 (1982) https://doi.org/10.1093/jn/112.4.810
  25. Song YS, Kwon TW. Hypocholesterolemic effect of soybean and soy products. Food Ind. Nutr. 5: 36-41 (2000)
  26. Balmir F, Stack R, Jeffrey E, Jimenez MD, Wang L, Potter SM. An extract of soy flour influences serum cholesterol and thyroid hormones in rats and hamsters. J. Nutr. 126: 3046-3053 (1996)
  27. Iwai K, Nakaya N, Kawasaki Y, Matsue H. Antioxidative function of natto, a kind of fermented soybeans: effect on LDL oxidation and lipid metabolism in cholesterol-fed rats. J. Agr. Food Chem. 50: 3597-3601 (2002) https://doi.org/10.1021/jf0117199