Effects of $\gamma$-Irradiation on the Antiallergic Activity of Alginate

  • Song, Eu-Jin (Faculty of Food Science and Biotechnology/Institute of Food Science, Pukyong National University) ;
  • Lee, So-Young (Faculty of Food Science and Biotechnology/Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong-Woo-Ri (Faculty of Food Science and Biotechnology/Institute of Food Science, Pukyong National University) ;
  • Park, Jin-Gyu (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Jae-Hun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Ju-Woon (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Byun, Myung-Woo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Ahn, Dong-Hyun (Faculty of Food Science and Biotechnology/Institute of Food Science, Pukyong National University)
  • Published : 2008.10.31

Abstract

This study was performed to determine the effects of $\gamma$-irradiation on the antiallergic activity of alginate. An alginate aqueous solution was $\gamma$-irradiated at 3, 5, 7, 10, 20, and 100 kGy. First, the molecular weight (Mw) of alginate rapidly decreased as the $\gamma$-irradiation dose increased up to 20 kGy. Then, the antiallergic activity of the $\gamma$-irradiated alginate was measured. Interlukin (IL)-4 cytokine and IgE level were significantly decreased in the $\gamma$-irradiated alginate groups as compared to the control group in vitro. The mice intraperitoneally administered with the $\gamma$-irradiated alginate exhibited lower ovalbumin-specific IgE and IgG1 level in serum than the control mice. Furthermore, the $\gamma$-irradiated alginate suppressed total and ovalbumin-specific IgE secretions in the splenocytes. Increased IL-2 level was observed in the culture supernatants of the splenocytes that were obtained from the mice administerd with the $\gamma$-irradiated alginate, while IL-4 level decreased. The present study indicates that $\gamma$-irradiated alginate can suppress allergy in a mouse allergy model.

Keywords

References

  1. Corry DB, Kheradmand F. Induction and regulation of the IgE response. Nature 402: B18-B23 (1999) https://doi.org/10.1038/35037014
  2. Bellanti JA. Cytokines and allergic disease: Clinical aspects. Allergy Asthma Proc. 19: 337-341 (1998)
  3. Viola JP, Rao A. Molecular regulation of cytokine gene expression during the immune response. J. Clin. Immunol. 19: 98-108 (1999) https://doi.org/10.1023/A:1020502516196
  4. Haug A, Lasem B, Smidsrod O. Study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem. Scand. 20: 183-190 (1966) https://doi.org/10.3891/acta.chem.scand.20-0183
  5. Philips GO, Williams PA. Gums and Stabilizers for the Food Industry. Pergamon Press, London, UK. pp. 422-424 (1984)
  6. Whistler RL, BeMiller JN. Industrial Gums. Academic Press, New York, NY, USA. pp. 422-424 (1973)
  7. Yonemoto Y, Tanaka H, Yamashita T, Kitabatake N, Ishida Y, Kimura A, Murata K. Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase. J. Ferment. Bioeng. 75: 68-70 (1993) https://doi.org/10.1016/0922-338X(93)90181-7
  8. Tomoda Y, Umemura K, Adachi T. Promotion of barley root enlongation under hypoxic conditions by alginate lyase-lysated. Biosci. Biotech. Bioch. 58: 202-203 (1994) https://doi.org/10.1271/bbb.58.202
  9. Natsume M, Kamo Y, Hirayama M, Adachi T. Isolation and characterization of alginate-derived oligosaccharides with root growth promoting activities. Carbohyd. Res. 258: 187-197 (1994) https://doi.org/10.1016/0008-6215(94)84085-7
  10. Tadashi Y, Aki H, Hanae W, Koji T, Makoto H. Alginic acid oligosaccharide suppersses Th2 development and IgE production by inducing IL-12 production. Int. Arch. Allergy Imm. 133: 239-247 (2004) https://doi.org/10.1159/000076830
  11. Kawada A, Hiura N, Tajima S, Takahara H. Alginate oligosaccharides stimulate VEGF-mediated growth and migration of human endothelial cells. Arch. Dermatol. Res. 291: 542-547 (1999) https://doi.org/10.1007/s004030050451
  12. Takeuchi T, Murata K, Kusakabe I. A method for depolymerization of alginate using the enzyme system of Flavobacterium multivolum. Nippon Shokuhin Kogyo Gakk. 41: 505-511 (1994) https://doi.org/10.3136/nskkk1962.41.505
  13. Joo DS, Cho SY. Preparation of carrageenan hydrolysates from carrageenan with organic acid. J. Korean Soc. Food Sci. Nutr. 32: 42-46 (2003) https://doi.org/10.3746/jkfn.2003.32.1.042
  14. Joo DS, Choi YS, Cho SY. Preparation of the depolymerized alginates by physical treatment processing with organic acids. J. Korean Fish. Soc. 36: 1-5 (2003)
  15. Kim SM, Park SM, Choi HM, Lee KT. Optimal processing parameters of low molecular weight carrageenan by ultrasound. J. Korean Fish. Soc. 32: 495-500 (1999)
  16. Kang IJ, Byun MW, Yook HS, Bae CH, Lee HS, Kwon JH, Chung CK. Production of modified starches by gamma irradiation. Radiat. Phys. Chem. 54: 425-430 (1999) https://doi.org/10.1016/S0969-806X(98)00274-6
  17. Humphreys ER, Howells GR. Degradation of sodium alginate by ${\gamma}-irradiation$ and by oxidative-reductive depolymerization. Carbohyd. Res. 16: 65-69 (1970)
  18. Phun HC, Nho YC. The utilization of radiation in polymer industries. Polymer 12: 389-397 (1988) https://doi.org/10.1016/0032-3861(71)90019-X
  19. Leonhardt J, Arnold G, Baer M, Langguth H, Huebert S. Radoiation degradation of cellulose. Radiat. Phys. Chem. 25: 899-904 (1985) https://doi.org/10.1016/0146-5724(85)90172-4
  20. Foldvary CsM, Takacs E, Wojnarovits L. Effect of high-energy radiation and alkali treatment on the properties of cellulose. Radiat. Phys. Chem. 67: 505-508 (2003) https://doi.org/10.1016/S0969-806X(03)00094-X
  21. Kwon JH. Import control of irradiated food. Food Ind. 159: 61-87 (2001)
  22. Byun JH, Kang YS, Kim SS, Kim DH, Hwang DR, Shin MK, Song HJ. The effect of water extract from tripterygium regelii on allergy. Korean J. Herbol. 18: 189-199 (2003)
  23. KFDA. Official Book for Food. Korean Food & Drug Administration, Seoul, Korea. pp. 151-152 (2005)
  24. Marcelletti JF, Katz DH. Elicitation of antigen-induced primary and secondary murine IgE antibody responses in vitro. Cell lmmunol. 135: 471-489 (1991) https://doi.org/10.1016/0008-8749(91)90291-I
  25. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tiermey S, Mofziger TH, Currens MJ, Seniff D, Boyd R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48: 4827-4833 (1988)
  26. Lee JW. Use of radiation technology for food industry and safety management. Food Eng. Prog. 3: 20-44 (2005)
  27. Cho M, Kim BY, Rhim JH. Degradation of alginate solution and powder by ${\gamma}-irradiation$. Food Eng. Prog. 7: 141-145 (2003)
  28. Nagaswa N, Mitomo H, Yoshii F, Kume T. Radiation-induced degradation of sodium alginate. Polym. Degrad. Stabil. 69: 279-285 (2000) https://doi.org/10.1016/S0141-3910(00)00070-7
  29. Kim YM, Co JR, Kim DS, Park JH. Cytotoxicities of hydrolyzed crude laminaran from eisenia bicyclis on the SNU-1, Hela, and SW cells. Korean J. Food Sci. Thechnol. 38: 793-798 (2006)
  30. Yuan H, Song J, Li X, Li N, Dai J. Immunomodulation and antitumor activity of ${\kappa}-carrageenan$ oligosaccharides. Cancer Lett. 243: 228-234 (2006) https://doi.org/10.1016/j.canlet.2005.11.032
  31. Vicek J, Le J. Immunology of cytokines: An introduction. pp. 1-19. In: The Cytokine Handbook. Thomson AW (ed). Academic Press Limited, London, UK (1994)
  32. Mosmann TR, Coffman RI. Th1 and Th2 cells different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7: 145-173 (1989) https://doi.org/10.1146/annurev.iy.07.040189.001045
  33. Fong TA, Mosmann TR. The role of interferon-gamma in delayed type hypersensitivity mediated by Th1 clones. J. Immunol. 143: 2887-2893 (1989)
  34. Park EJ, Kim BC, Park KC, Kim YR, Lee HJ, So MW, Chang YS, Cho SH, Kim SY, Jin MR. Control of IgE and selective TH1 and TH2 cytokines by PG102 isolated from Actinidia arguta. J. Allergy Clin. Immun. 116: 1151-1157 (2005) https://doi.org/10.1016/j.jaci.2005.07.024
  35. Sato Y, Akiyama H, Suganuma H, Watanabe T, Nagaoka MH, Inakuma T, Goda Y, Maitani T. The feeding of ${\beta}-carotene$ downregulates serum IgE levels and inhibits the type I allergic response in mice. Biol. Pharm. Bull. 27: 978-984 (2004) https://doi.org/10.1248/bpb.27.978
  36. Sakai S, Akiyama H, Harikai N, Toyoda H, Toida T, Maitani T, Imanari T. Effect of chondroitin sulfate on murine splenocytes sensitized with ovalbumin. Immunol. Lett. 84: 211-216 (2002) https://doi.org/10.1016/S0165-2478(02)00181-5
  37. Shida K, Makino K, Morishita A, Takamizawa K, Hachimura S, Ametani A, Sato T, Kumagai Y, Habu S, Kaminogawa S. Lactobacillus casei inhibits antigen-induced IgE secretionn through regulation of cytokine production in murin splenocyte cultures. Int. Arch. Allergy Imm. 115: 278-287 (1998) https://doi.org/10.1159/000069458
  38. Shida K, Takahashi R, Iwadate E, Takamizawa K, Yasui H, Sato T, Habu S, Hachimura S, Kaminogawa S. Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allegy model. Clin. Exp. Allergy 32: 563-570 (2002) https://doi.org/10.1046/j.0954-7894.2002.01354.x
  39. Durham SR, Till SJ. Immunologic changes associated with allergen immunotherapy. J. Allergy Clin. Immun. 102: 157-164 (1998) https://doi.org/10.1016/S0091-6749(98)70079-X
  40. Bohle B. Allergen-specific T lymphocytes as targets for specific immunotherapy: Striking at the roots of type I allergy. Arch. Immunol. Ther. Ex. 50: 233-241 (2002)
  41. Maruyama H, Tamauch H, Hashimoto M, Nakano T. Suppression of Th2 Immune responses by mekabu fucoidan from undaria pinnatifida sporophylls. Int. Arch. Allergy Imm. 137: 289-294 (2005) https://doi.org/10.1159/000086422
  42. Shigeru K, Yoshinori M. Quillaja saponin can modulate ovalbumine-induced IgE allergic responses through regulation of Th1/Th2 balance in a murine model. J. Agr. Food Chem. 54: 3271-3276 (2006) https://doi.org/10.1021/jf060169h
  43. Zhou G, Sun YP, Xin H, Zhang Y, Li Z, Xu Z. In vivo antitumor and immunomodulation activities of different molecular weight lambdacarrageenans from Chondrus ocellatus. Pharmacol Res. 50: 47-53 (2004) https://doi.org/10.1016/j.phrs.2003.12.002
  44. Cho SH, Yang KM, Bae BS, Lim SN, Yu RN. Effect of sea tangle intake on proliferation on splenocytes from normal and diabetic Mice. Korean. Nutr. Soc. 31: 973-998 (1998)
  45. Hwang YK. Effect of pear on immune function in mice. MS thesis, Sookmyung Women's University, Seoul, Korea (2005)