Diffusion Characteristics of Heavy Metal Pollution depend on Distance from Abandoned Mines

폐광산으로부터의 이격거리에 따른 중금속오염 확산특성

  • Kang, Mee-A (Department of Environmental Engineering, Andong National University) ;
  • Park, Ji-Min (Department of Environmental Engineering, Andong National University) ;
  • Kim, Kwang-Tae (Department of Environmental Engineering, Chonbuk National University)
  • Published : 2008.09.30

Abstract

In the study it was investigated the diffusion characteristics of heavy metal pollutions such as Cu, Pb, Hg and As which was the main pollution sources of soils from abandoned mines. The pollution of Cu and Pb was caused by Mine A, that of Hg was caused by Mine 3, that of Pb was caused by Mine C and that of Cu, Pb, As was caused by Mine D. Though the high concentration was detected within 100m from abandoned mines, the low concentration was detected over than 100m from abandoned mines in all heavy metals investigated except As. It means that it was very difficult to estimate the pollution level of As caused abandoned mines. The results were discussed in the concentrations of Cu, Pb and distances showed a good relationship with 0.71 and 0.68 as the coefficient of correlation, respectively. In particular the relativity of Cu to Pb as very strong with 0.84 as the coefficient of correlation. It was consistent with the chemical behavior in soils in the case of Cu and Pb. Therefore it will be a promising approach to remove Cu and Pb with estimated values in the study.

인근 토양의 Cu, Pb, Hg 및 As의 주요오염원인 폐광산을 대상으로 폐광산으로부터의 이격거리에 따른 중금속 오염원의 확산특성을 조사하였다. 광산A는 Cu와 Pb의 오염원으로, 광산B는 Hg의 오염원으로, 광산C는 Pb의 오염원으로, 광산D는 Cu, Pb 및 As의 오염원으로 인근토양에 영향을 미치는 것으로 조사되었다. As를 제외한 다른 중금속류는 폐광산으로부터의 이격거리가 100m 이내인 지점에서 고농도로 검출되지만 그 이상의 이격거리에 소재하는 토양에서의 검출은 극히 낮은 농도로 분석되었으므로 이들 중금속류에 의한 토양오염은 우려할 수준이 아님을 알 수 있다. 고농도로 검출되는 비소의 경우에는 이격거리에 따라 일정한 감소경향을 나타내지 않으므로 비소에 의한 오염수준을 예측하기 어렵다. 4개의 광산을 대상으로 한 이격거리에 따른 Cu와 Pb의 오염확산 예측을 위한 방정식을 구한 결과, 상관계수는 각각 0.71과 0.68로 양호한 관계를 나타내었다. 특히 Cu와 Pb의 상관성을 상관계수로 살펴보면 0.84로 매우 유효하므로 이들의 토양내 화학적 거동이 유사함을 알 수 있어 이들을 처리하는 기술을 응용하는데 있어서도 본 연구결과가 유용하게 사용될 것으로 기대된다.

Keywords

References

  1. 강미아, 2007, 산성광산배수로 인한 환경오염도 조사, 대한지질공학회지, 17(1), pp. 143-150
  2. 강미아, 김광태, 2007, 토양 및 광미의 용출실험을 이용한 폐광산오염수준의 모니터링, 대한지질공학회지, 17(3), pp. 419-424
  3. 김정대, 2005, 강원도 폐금속광산지역의 광미와 주변토양의 중금속 오염현황 및 오염도 평가, 대한환경공학회지, 27(6), pp. 626-634
  4. 이은기, 최상일, 2007, 인산염을 이용한 휴 폐광산 주변 중금속 오염토양의 안정화처리에 관한 연구, 한국지하수토양환경학회지, 12(6), pp. 100-106
  5. 임길재, 지상우, 정영욱, 안주성, 민정식, 최용석, 이웅주, 홍지혜, 윤성문, 2006, 전주일광산 광미적치장의 지구화학적 특성, 한국지구시스템공학회지, 43(5), pp. 458-468
  6. Bednar, A.J., Garbarino, J.R., Ranville, J.F., Wildeman, T.R., 2005, Effect of iron on arsenic speciation and redox chemistry in acid mine water, Journal of Geochemical Exploration, 85, pp. 55-62 https://doi.org/10.1016/j.gexplo.2004.10.001
  7. Catalan, L.J.J., Kathleen C. Buset and Guohong Yin, 2002, Reactivity of Oxidized Sulfidic Mine Tailings during Lime Treatment, Environ. Sci. Technol., 36(12), pp. 2766-2771 https://doi.org/10.1021/es011150s
  8. Franco Frau and Carla Ardau, 2003, Geochemical controls on arsenic distribution in the Baccu Locci stream catchment (Sardinia, Italy) affected by past mining, Applied Geochemistry, 18, pp. 1373-1386 https://doi.org/10.1016/S0883-2927(03)00057-X
  9. Hudson-Edwards, K.A., Macklin, M.G., Jamieson, H.E., Brewer, P.A., Coulthard, T.J., Howard, A.J. and Turner, J.N., 2003, The impact of tailings dam spills and clean up operations on sediment and water quality in river systems, Applied Geochemistry, 18(2), pp. 221-239 https://doi.org/10.1016/S0883-2927(02)00122-1
  10. Kang, Meea, Kawasaki, Mutsuo, Tamada Synya, Kamei Tasuku, and Magara Yasumoto, 2000, Desalination, 131(1-3), pp. 293-298 https://doi.org/10.1016/S0011-9164(00)90027-4
  11. Macklin, M.G., Brewer, P.A., Balteanu, D., Coulthard, T.J., Driga, B., Howard, A.J. and Jaharia, S., 2003, The long term fate and environmental significance of contaminant metals releases by the January and March 2000 mining tailings dam failures in Maramures County, upper Tisa Basin, Romania, Applied Geochemistry, 18(2), pp. 241-257 https://doi.org/10.1016/S0883-2927(02)00123-3
  12. McGregor, R.G. and Blowes, D.W., 2002, The physical, chemical and mineralogical properties of three cemented layers within sulfide-bearing mone tailings, Journal of Geochemical Exploration, 76(3), pp. 195-207 https://doi.org/10.1016/S0375-6742(02)00255-8
  13. Palo, Alto, 1984, Chemical fractionation of trace metals in contaminated soils, J. Environ. Qual., 26, pp. 259-264 https://doi.org/10.2134/jeq1997.00472425002600010036x
  14. Yuko Sato, Meea Kang, Tasuku Kamei, Yasumoto Magara, 2002, Performance of nanofiltration for arsenic removal, Water Research 36, pp. 3371-3377 https://doi.org/10.1016/S0043-1354(02)00037-4