Beneficial Effects of Fluorescent Pseudomonads on Seed Germination, Growth Promotion, and Suppression of Charcoal Rot in Groundnut (Arachis hypogea L.)

  • Published : 2008.09.30

Abstract

Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at $28{\pm}1^{\circ}C$, both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71 % and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was tested 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut.

Keywords

References

  1. Bagnasco, P., D. L. L. Fuente, G. Gualitieri, F. Noya, and A. Arias. 1998. Fluorescent Pseudomonas spp as biocontrol against forage legume root pathogenic fungi. Soil Biol. Biochem. 10: 1317-1322
  2. Bakker, A. W. and B. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol. Biochem. 19: 451-456 https://doi.org/10.1016/0038-0717(87)90037-X
  3. Bashan, Y. 1986. Migration of the rhizosphere bacteria Azospirillum brasiliense and Pseudomonas fluorescens towards wheat root in the soil. J. Gen. Microbiol. 132: 3407-3414
  4. Bezbaruah, B. 1994. Plant and Soil Health Through Microbial Management in Tea Plantations. Godricke Group, Calcutta, India
  5. Bric, J. M., R. M. Bostoc, and S. E. Silverstone. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 534-538
  6. Burr, T. J. and A. Caesar. 1984. Beneficial plant bacteria. CRC Crit. Rev. Plant Sci. 2: 1-20 https://doi.org/10.1080/07352688409382186
  7. Castric, K. F. and P. A. Castric. 1983. Method for rapid detection of cyanogenic bacteria. Appl. Env. Microbiol. 45: 701-702
  8. Defago, G. and D. Haas. 1990. Pseudomonads as antagonists of soil-borne plant pathogens: Modes of action and genetic analysis, pp. 249-291. In J.-M. Bollag and G. Stotzky (eds.), Soil Biochemistry, Vol. 6. Marcel Dekker, Inc., New York
  9. Dhingra, O. D. and J. B. Sinclair. 1977. An Annotated Bibliography of Macrophomina phaseolina 1908-1975. University of Illinois at Urbana Champaign, Urbana-Champaign, U.S.A
  10. Dowling, D. N. and F. O'Gara. 1994. Metabolites of Pseudomonas involved in biocontrol of plant diseases. Trends Biotechnol. 12: 133-141 https://doi.org/10.1016/0167-7799(94)90091-4
  11. Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
  12. Gupta, C. P., B. Kumar, R. C. Dubey, and D. K. Maheshwari. 2006. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 51: 821-835 https://doi.org/10.1007/s10526-006-9000-1
  13. Gutterson, N. 1990. Microbial fungicides: Recent approaches to elucidating mechanisms. Crit. Rev. Biotechnol. 10: 69-91 https://doi.org/10.3109/07388559009038205
  14. Haas, D., T. Dberhansil, and G. Defago. 1991. Indole acetic acid synthesis in the biocontrol strain CHAD of Pseudomonas fluorescens. Role of tryptophan side chain oxidase. J. Gen. Microbiol. 137: 2273-2280 https://doi.org/10.1099/00221287-137-10-2273
  15. Hofte, M., K. Y. Seong, E. Jurkevitch, and W. Verstraete. 1991. Pyoverdin production by the plant growth beneficial Pseudomonas strains 7NSK2: Ecological significance in soil. Plant Soil 130: 796-799
  16. Holt, J. G., N. R. Kreig, P. Sneath, J. T Staley, and S. T Williams. 1994. In: Bergey's Manual of Determinative Bacteriology. pp. 151-157. Williams and Williams Press, London
  17. Jayaswal, R. K., M. F. Fernandez, L. Visintin, M. Kurtz, R. S. Upadhyay, J. Webb, and K. Rinechart. 1993. Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr. Microbiol. 26: 17-22 https://doi.org/10.1007/BF01577237
  18. Kloepper, J. W., K. J. Hume, F. M. Scher, C. Singleton, B. Tipping, M. Laliberte, et al. 1988. Plant growth promoting rhizobacteria (PGPR) on canola (rape seed). Plant Dis. 72: 42-46 https://doi.org/10.1094/PD-72-0042
  19. Lam, S. T. 1990. Alternatives for suppressing agricultural pest and diseases, pp. 767-778. In R. Baker and R. E. Dunn (eds.), New Directions in Biological Control. Alan R. Liss Inc, New York
  20. Leisinger, T. and R. Margraff. 1979. Secondary metabolites of fluorescent pseudomonads. Microbiol. Rev. 43: 422-442
  21. Leong, J. 1986. Siderophores; Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24: 187-209 https://doi.org/10.1146/annurev.py.24.090186.001155
  22. O'Sullivan, D. J. and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662-676
  23. Pandey, P., S. C. Kang, C. P. Gupta, and D. K. Maheshwari. 2005. Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr. Microbiol. 51: 303-309 https://doi.org/10.1007/s00284-005-0014-1
  24. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17: 362-370
  25. Rao, C. V. S., I. P. Sachan, and B. N. Johri. 1999. Influence of pseudomonads on growth and nodulation of lentil (Lens esculentus) in Fusarium infested soil. Indian J. Microbiol. 39: 23-29
  26. Rovira, A. D., G. D. Bowen, and R. C. Foster. 1983. The significance of rhizosphere microflora and mycorrhizas in plant nutrition, pp. 61-93. In A. Kauchli and R. L. Bieleski (eds.), Encyclopedia of Plant Physiology. 15. New Series Springer- Verlag, Berlin
  27. Scher, F. M. and R. Baker. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72: 1567-1573 https://doi.org/10.1094/Phyto-72-1567
  28. Schwyn, B. and J. B. Neilends. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160: 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  29. Skidmore, A. M. and C. H. Dickinson. 1976. Colony interaction and hyphal interference between Septoria nodorum and phylloplane fungi. Trans. Brit. Mycol. Soc. 66: 57-74 https://doi.org/10.1016/S0007-1536(76)80092-7
  30. Srivastava, A. K., T. Singh, T. K. Jana, and D. K. Arora. 2001. Induced resistance and control of charcoal rot in Cicer arietinuns (Chickpea) by Pseudomonas fluorescens. Can. J. Bot. 79: 787-795 https://doi.org/10.1139/cjb-79-7-787
  31. VanPeer, R., H. L. M. Punte, L. A. Deweger, and B. Schippers. 1990. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl. Environ. Microbiol. 56: 2462
  32. Weller, D. M. 1984. Distribution of take-all suppressive strain of Pseudomonas fluorescens on seminal roots of winter wheat. Appl. Environ. Microbiol. 48: 897
  33. Weller, D. M. 1988. Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407 https://doi.org/10.1146/annurev.py.26.090188.002115
  34. Weller, D. M. and R. J. Cook. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73: 463-469 https://doi.org/10.1094/Phyto-73-463
  35. Xu, G. W. and D. C. Gross. 1986. Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppression of potato seed piece decay. Phytopathology 76: 414-422 https://doi.org/10.1094/Phyto-76-414