Isolation of Sorangium cellulosum Carrying Epothilone Gene Clusters

  • Hyun, Hye-Sook (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Chung, Jin-Woo (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Kim, Ji-Hoon (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnolgoy (KRIBB)) ;
  • Lee, Jong-Suk (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnolgoy (KRIBB)) ;
  • Kwon, Byoung-Mog (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnolgoy (KRIBB)) ;
  • Son, Kwang-Hee (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnolgoy (KRIBB)) ;
  • Cho, Kyung-Yun (Myxobacteria Bank, Department of Biotechnology, Hoseo University)
  • Published : 2008.08.31

Abstract

Epothilone and its analogs are a potent new class of anticancer compounds produced by myxobacteria. Thus, in an effort to identify new myxobacterial strains producing epothilone and its analogs, cellulose-degrading myxobacteria were isolated from Korean soils, and 13 strains carrying epothilone biosynthetic gene homologs were screened using a polymerase chain reaction. A migration assay revealed that Sorangium cellulosum KYC3013, 3016, 3017, and 3018 all produced microtubule-stabilizing compounds, and an LC-MS/MS analysis showed that S. cellulosum KYC3013 synthesized epothilone A.

Keywords

References

  1. Bollag, D. M., P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C. M. Woods. 1995. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55: 2325-2333
  2. Dawid, W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24: 403-427 https://doi.org/10.1111/j.1574-6976.2000.tb00548.x
  3. Frykman, S. A., H. Tsuruta, and P. J. Licari. 2005. Assessment of fed-batch, semicontinuous, and continuous epothilone D production processes. Biotechnol. Prog. 21: 1102-1108 https://doi.org/10.1021/bp050010+
  4. Fumoleau, P., B. Coudert, N. Isambert, and E. Ferrant. 2007. Novel tubulin-targeting agents: Anticancer activity and pharmacologic profile of epothilones and related analogues. Ann. Oncol. 5: v9-v15
  5. Gerth, K., N. Bedorf, G. Hofle, H. Irschik, and H. Reichenbach. 1996. Epothilones A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. J. Antibiot. 49: 560-563 https://doi.org/10.7164/antibiotics.49.560
  6. Hoefle, G., N. Bedorf, K. Gerth, and H. Reichenback. 1993. Patent DE 4138042
  7. Julien, B., S. Shah, R. Ziermann, R. Goldman, L. Katz, and C. Khosla. 2000. Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene 16: 153-160
  8. Lee, C., J. Chung, J. Kim, and K. Cho. 2006. Identification of a gene required for gliding motility in Myxococcus xanthus. J. Microbiol. Biotechnol. 16: 771-777
  9. Lee, F. Y., R. Borzilleri, C. R. Fairchild, S. H. Kim, B. H. Long, C. Reventos-Suarez, G. D. Vite, W. C. Rose, and R. A. Kramer. 2001. BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin. Cancer Res. 7: 1429-1437
  10. Lee, J. S., D. H. Kim, K. Liu, T. K. Oh, and C. H. Lee. 2005. Identification of flavonoids using liquid chromatography with electrospray ionization and ion trap tandem mass spectrometry with an MS/MS library. Rapid Commun. Mass Spectrom. 19: 3539-3548 https://doi.org/10.1002/rcm.2230
  11. Molnar, I., T. Schupp, M. Ono, R. Zirkle, M. Milnamow, B. Nowak-Thompson, et al. 2000. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem. Biol. 7: 97-109 https://doi.org/10.1016/S1074-5521(00)00075-2
  12. Mutka, S. C., J. R. Carney, Y. Liu, and J. Kennedy. 2006. Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45: 1321-1330 https://doi.org/10.1021/bi052075r
  13. Park, S. W., S. J. Park, S. J. Han, J. W. Lee, D. S. Kim, J. H. Kim, B. W. Kim, J. W. Lee, and S. J. Sim. 2007. Repeated batch production of epothilone B by immobilized Sorangium cellulosum. J. Microbiol. Biotechnol. 17: 1208-1212
  14. Park, S. W., S. H. Choi, Y. J. Yoon, D. H. Lee, D. J. Kim, J.-H. Kim, et al. 2006. Enhanced production of epothilones by carbon sources in Sorangium cellulosum. J. Microbiol. Biotechnol. 16: 519-523
  15. Regentin, R., S. Frykman, J. Lau, H. Tsuruta, and P. Licari. 2003. Nutrient regulation of epothilone biosynthesis in heterologous and native production strains. Appl. Microbiol. Biotechnol. 61: 451-455 https://doi.org/10.1007/s00253-003-1263-1
  16. Reichenbach, H. 1999. The ecology of the myxobacteria. Environ. Microbiol. 1: 15-21 https://doi.org/10.1046/j.1462-2920.1999.00016.x
  17. Reichenbach, H. and G. Hofle. 1999. Myxobacteria as producers of secondary metabolites, pp. 149-179. In S. Grabley and R. Thiericke (eds.), Drug Discovery from Nature, Springer Verlag, Berlin
  18. Reichenbach, H. and M. Dworkin. 1992. The myxobacteria, pp. 3416-3487. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes, 2nd Ed., Vol. IV. Springer Verlag, New York
  19. Reichengbach, H. 2001. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbiol. Biotechnol. 27: 149-156 https://doi.org/10.1038/sj.jim.7000025
  20. Tang, L., L. Chung, J. R. Carney, C. M. Starks, P. Licari, and L. Katz. 2005. Generation of new epothilones by genetic engineering of a polyketide synthase in Myxococcus xanthus. J. Antibiot. 58:178-184 https://doi.org/10.1038/ja.2005.20
  21. Tang, L., S. Shah, L. Chung, J. Carney, L. Katz, C. Khosla, and B. Julien. 2000. Cloning and heterologous expression of the epothilone gene cluster. Science 28: 640-642
  22. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
  23. Ward, M. J. and D. R. Zusman. 2000. Developmental aggregation and fruiting body formation in the gliding bacterium Myxococcus xanthus, pp. 243-262. In Y. V. Brun and L. J. Shimkets (eds.), Prokaryotic Development. ASM Press, Washington, D.C