DOI QR코드

DOI QR Code

ON HOMOMORPHISMS ON CSASZAR FRAMES

  • Chung, Se-Hwa (DEPARTMENT OF MATHEMATICS AND INFORMATION KYUNGWON UNIVERSITY)
  • Published : 2008.07.31

Abstract

We introduce a concept of continuous homomorphisms between Csaszar frames and show that the Cauchy completion in CsFrm gives rise to a coreflection in the category PCsFrm (resp. UCsFrm) consisting of proximal Csaszar frames and uniform continuous homomor-phisms (resp. uniform Csaszar frames and uniform continuous homomor-phisms).

Keywords

References

  1. J. Adamek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories, Wiley Interscience, New York, 1990
  2. B. Banschewski, Compactifications of frames, Math. Nachr. 149 (1990), 105-115 https://doi.org/10.1002/mana.19901490107
  3. B. Banschewski and S. S. Hong, Filters and strict extensions of frames, Kyungpook Math. J. 39 (1999), no. 1, 215-230
  4. B. Banschewski and A. Pultr, Cauchy points of uniform and nearness frames, Quaestions Math. 19 (1996), 101-127 https://doi.org/10.1080/16073606.1996.9631828
  5. S. H. Chung, Cauchy completion of Csaszar frames, J. Korean Math. Soc. 42 (2005), no. 2, 291-304 https://doi.org/10.4134/JKMS.2005.42.2.291
  6. A, Csaszar, Foundation of General Topology, MacMillan Company, New York, 1963
  7. S. S. Hong, Convergence in frames, Kyungpook Math. J. 35 (1995), 85-91
  8. S. S. Hong and Y. K. Kim, Cauchy completions of nearness frames, Applied Categorical Structures, 3 (1995), 371-377 https://doi.org/10.1007/BF00872906
  9. J. R. Isbell, Atomless parts of space, Math. Scand. 31 (1972), 5-32 https://doi.org/10.7146/math.scand.a-11409
  10. P. T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982
  11. J. Picado, Structures frames by Weil Entourages, Applied Categorical Structures 8 (2000), 351-366 https://doi.org/10.1023/A:1008713430424