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ON HOMOMORPHISMS ON CSASZAR FRAMES

SE Hwa CHUNG

ABSTRACT. We introduce a concept of continuous homomorphisms be-
tween Csaszdr frames and show that the Cauchy completion in CsFrm
gives rise to a coreflection in the category PCsFrm (resp. UCsFrm) con-
sisting of proximal Csdszér frames and uniform continuous homomor-
phisms (resp. uniform Csészér frames and uniform continuous homomor-
phisms).

1. Introduction

Many authors have focused attention on the fact that the important aspect
of a topological space is not its set of points but its lattice of open subsets.
The study of topological properties from a lattice-theoretic viewpoint was ini-
tiated by Wallman. Theory of frames was introduced by C. Ehresmann and
J. Bénabou (cf. [10]). A frame is a complete lattice L satisfying the distributive

law
x/\\/Sz\/{z/\slsES}
forallz € L and § C L.

In view of the fact that in a set, uniformities, proximities, nearness structures
and syntopogenous structures determine a topology on the set, such structures
must appear as additional structures on frames. For such a reason, the study
of structured frames was introduced by Isbell ([9]) and in recent years, various
authors are studying structured frames (c¢f. [4, 5, 8, 11]).

This paper is a continuation of the previous paper [5] in which we introduce
Cs4szdr frames generalizing syntopogenous spaces [6]. In this paper, we intro-
duce a concept of continuous homomorphisms preserving Csészar frame struc-
tures and investigate some properties of continuous homomorphisms. More-
over, we show that the Cauchy completion in CsFrm gives rise to a coreflection
in the category PCsFrm (resp. UCsFrm) consisting of proximal Csdszar frames
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and uniform continuous homomorphisms (resp. uniform Csdszar frames and
uniform continuous homomorphisms). Now we briefly recall some of basic con-
cepts of frame theory and introduce notation and terminology. For the general
background of frames and Csészér frames, we refer to ([10], [5], resp.) and for
the category theory, we refer to [1].

In a frame L, we have the relation @ < b by a* Vb = e, where a* is the
pseudocomplement of a in L, given by

a*=\/{x€L|m/\a=0}.

A Csdszdr order < is a binary relation on L satisfying the following:

(1) 0<0ande<e,
(2) z <y implies z < v,
(3) < a<b<yimplies z < y.

A Csészar order < is symmetric if x < y implies y* < x*. A Csdszdr frame is a
pair (L, L), where L is a frame and £ is a set of Csészar orders on L with the
following properties:

(1) L is up-directed.
(2) every member of £ is a meet-sublattice of L x L.
(3) L is admissible, i.e., for any z € L, z = \/{y € L | y <z z} where
<c=U{<e L}
A frame homomorphism is a map h : M — L between frames preserving

arbitrary finite meets (including the top e) and arbitrary joins (including the
bottom 0), and has the right adjoint h. : L — M, i.e.,

h(z) <y if and only ifz < h.(y).

A frame homomorphism h : M — L is dense if h(a) = 0 implies a = 0.

Let h : M — L be a frame homomorphism and let <,, and <; be Csédszar
orders on M and L, respectively. Then we have the two binary relations as
follows:

zh.(<;)y if and only if there are elements a,b € L such that
hMz) <a < b, he(b) <y

and

zh{<,, )y if and only if there are elements a,b € M such that

z < h(a), a <m b, h(b) < y.

If a frame homomorphism h : M — L is dense, then h.(<1) is a Csdszéar order
on M, and for any frame homomorphism h : M — L, h(<) is a Csaszar order
onL.
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2. Continuous homomorphisms on Csdszar frames

In this section we introduce a concept of continuous homomorphisms be-
tween Csészar frames and show that every dense onto continuous homomor-
phism is a uniform continuous homomorphism and hence a Cauchy frame ho-
momorphism.

Definition. A Csiszar frame (L, £) is said to be:

(1) strong if for each Q€ L, there is <1,€ L such that a <1 b implies a <,
¢ <, b for some c € L.

(2} symmetric if every member of £ is symmetric.

(3) regular if every member of £ is coarser than <.

(4) prozimal if it is strong, symmetric and regular.

(5} uniform if it is proximal and every member of £ is a meet-complete
sublattice of L x L.

If h: M — (L,L) is a dense onto frame homomorphism and (L, L) is
symmetric and strong, then (M, h.(L)) is also symmetric and strong, where
h«(L) denotes the set {h.(<) :<€ L}.

As noted in the previous section, <i¢z denotes U{<t€ £} for a Csdszér frame
(L,L0).

Proposition 2.1. If (L, £} is a prozimal Csdszdr frame, then <ip satisfies the
following:

(1) <z is a symmetric Csdszdr order.

(2) <z is strong.

(3) <z is a sublattice of L x L.

Proof. (1) It is enough to show that <iz is symmetric. Suppose z <z ¥, then
z Q y for some <€ L. Since < is symmetric, ¥* <0 z* and hence y* <, z*.

(2) Suppose x <iz vy, then z <t y for some <€ L. Since £ is strong, <o
z <o y for some z € L and g€ £, and hence z <z z g y. Thus < is strong.

(3) Suppose a <iz b and a <z ¢, then there are <y, <12€ £ such that a <11 b
and a <z c¢. Since L is up-directed, there is <g€ L such that <; U <2C<,.
Since <y is a meet-sublattice of L x L, a <lg bAc and hence a <1z bAc. Suppose
b Q¢ a and ¢ <z a, then there are z,y,u,v € L such that b <z z < v <z a and
c gy < v <z a because £ is strong and <1,C<. Since < is symmetric and
a meet-sublattice of L x L, (bV ¢)** <z (z Vy)** and so (bV ) Az (zVy)**.
Since (zVy)*™ < (uVvo)and (uvv) <a, (bVe) <z a. O

Remark 2.2. If (L, £) is a proximal Csdszdr frame, then <. is a strong inclusion.
Therefor, if (L, L) is a proximal Csészar frame or a uniform Csdszdr frame, it
has a compactification (cf. [2]).

Now we introduce a concept of continuous homomorphisms and surjections
between Csédszar frames.
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Definition. Let (L,£) and (M, M) be Csészér frames. A frame homomor-
phism h : M — L is said to be:
(1) a continuous homomorphism if for each <I,,€ M, there is a <;€ M
with h(<,) €<, or equivalently (h x h)(<,,) C<;.
(2) a surjection if it is onto dense and M = {h.(«) :<€ L}.

Remark 2.3. It is now clear that the class of Csdszér frames and continuous
homomorphisms forms a category.

If h: M — L is an onto dense frame homomorphism, then for any Csdszar
order <1 on L, h(h.(<)) =< and hence every surjection is a continuous homo-
morphism.

Definition ([5]). A filter F on a Csészar frame (L, L) is said to be :
(1) Cauchyif a <z bimplies a* € Forbe F.
(2) <c-regular(or simply regular) if for any a € F, there is b € F with
b« C a.

For a filter F on a Csészér frame (L, £), we write
F°={aeL:b<gafor somebdc F}.

Definition. Let L be a frame and < a Csdszar order on L. An element a € L
is called «-small if @ < z* or a < y whenever z < y.

Denote by S(<) the set of <-small elements. Let U be a set and C an order
on U. Then for A,B C U, A is said to C-refine B if for any a € A, there is
b € B with a C b and we write AC B.

Remark 2.4. A filter F on a Cséaszér frame (L, £) is Cauchy if and only if for
any <€ L, FNS(<) #0.

Definition ([5]). A frame homomorphism h : (M, M) — (L,L) between
Csészar frames is called a uniform homomorphism if for each <,,€ M there is

a <€ L with S(<;) < h(S(<m)).

Recall that if h : M — L is a dense frame homomorphism, then for each
z € M, h.(h(z)) < z**.

Theorem 2.5. If h: (M, M) — (L, L) is a dense onto continuous homomor-
phism between prozimal Csdszdr frames, then h is uniform.

Proof. Take any <,,€<iaq. Since (M, M) is proximal, there is <€<1p4 such
that s <, ¢t implies s < u* < ¢. Since h is continuous, there is <;e<1,
with h(<) C<; and hence S(<;) C S(h(<1)). Now, it is enough to show that
S(h(<)) € h(S(<m)). Take any a € S(h(<1)) and suppose z <, y. Then
T < z <y for some z € M with z = z** and hence h(z) k(<) h(z) h(<) h(y).
Then a < [h(z)]* or a < h(z) for a € S(h(<1)). Since A is dense, hy(a) Az =0
or hi(a) < hi(h(2)) < z < y. Hence hy(a) € S(<m) and hence h.(S(h(<)) C
S(<Um). Since h is onto, S(h(<1)) C h(S(<m)). Thus S(<;) € A(S(<m)). This
completes the proof. a
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Definition ([5]). A frame homomorphism h : (M, M) — (L,L) between
Csészéar frames is a Cauchy frame homomorphism if for any regular Cauchy
filter F in L, there is a regular Cauchy filter G in M with h(G) C F.

Theorem 2.6 ([5]). Every uniform homomorphism h : (M, M) — (L,L)
between prorimal Csdszdr frames is a Cauchy homomorphism.

Remark 2.7. Using the above theorems, one has the following:

(1) Every dense onto continuous homomorphism between proximal Csészar
frames is a Cauchy homomorphism.
(2) Every surjection is a Cauchy homomorphism.

Proposition 2.8. If a frame homomorphism h : (M, M) — (L,L) is a sur-
jection and F is a regular Cauchy filter on M, then h(F) is a regular Cauchy
filter on L.

Proof. Since h is dense, h(F) is a filter base. Take any a € h(F) and suppose
a < b. Then there is z € F with h(z) = a. Then z < h,(b) and so b € h(F') for
h is onto. Thus h(F) is a filter. Suppose a < b in L, then h.(a) k(<) h.(b).
Since F is Cauchy, [h«(a)]* € F or h.(b) € F. Hence h([h.(a)])* € h(F) or
h(h.(b)) € F and hence a* € h(F) or b € h(F) for h is onto. Further, there
are s,t € F such that f(t) = a and sh. (<)t for some <€ £ and hence h(s) < a
and h(s) € h(F'). Thus h(F) is regular. O

Definition. A frame homomorphism between proximal Csdszar frames is said
to be uniform continuous if it is uniform and continuous.

PCsFrm denotes the Category of proximal Csiszédr frames and uniform con-
tinuous homomorphisms and CPCsFrm denotes the full subcategory of PCsFrm
determined by Cauchy complete proximal Csészar frames.

3. Cauchy completions of Csdszar frames

Definition ([3]). A strict extension of a frame L is an onto dense frame ho-
momorphism h : M — L satisfying the following:

M={\/A: ACh(L)}.

For a Csészér frame (L, £), let X be the set of regular Cauchy filters on L
and L x P(X) the product frame of L and P(X). Then SxL = {(a,X,) : a € L}
is a subframe of L x P(X), where ¥, = {F € X :a € F}. Let s: SxL — L be
the restriction of the first projection of Pry : L x P(X) — L and cL denotes
{(VA,Z4): AC su(L)}. Thency, : cL — Lisastrict extension of L associated
with X (see [3, 8] for a more detail).

Remark 3.1. Foranya € L, £, = {F € X : b€ F for some b < a}.

Recall that in any frame L, a cover of L is any subset whose join is e and a
filter F on L is convergent if for any cover A of L, F N A # 0 (see [7]).



458 SE HWA CHUNG

Definition ([5]). A Csészar frame is Cauchy complete if every regular Cauchy
filter is convergent.

The proof of the following can be found in [5].

Proposition 3.2. For any prozimal Csdszdr frame (L, L), (cL, L*) is a Cauchy
complete prozimal Csdszdr frame, where £* = {cL,(<) :<€ L}.

Lemma 3.3 ([5)). (1) Let (L, L) be a prozimal Csdszdr frame. Then for any
<€ L, there is <.€ L with S(<,) <, S(<).

(2) If h: M — L is an onto dense frame homomorphism and < is a Csdszdr
order on L, then S(h.(<)) < h.(S(<)).

Let u : PCsFrm — Frm be the forgetful functor, then one has the following:

Lemma 3.4. Every surjection h : (M, M) — (L, L) between prozimal Csdszdr
frames is u-initial.

Proof. Take any proximal Csészar frame (K, K) and a frame homomorphism
k: K — M such that hok : (k,K) — (L, L) is a uniform continuous homo-
morphism. We first show that &k : (K,K) — (M, M) is continuous. Take any
<1€ K and suppose z <1; y. Then z < a < b < y for some a,b € K and <€ K.
Since (K, K) is a regular proximal Csészar frame and k is a frame homomor-
phism, k(z) < k(a) < k(b)** < k(y). Since h o k is continuous, there is <la€ £
with h(k(z)) <2 h(k(a)) <2 h(k(b)) <2 h{k(y)). Since h is a surjection,

k(z) hae(<2) ha[h(k(@))] hi(<02) Rulh(k(B))] < k()™ < k(y)

and hence k(z) h.(<2) k(y). Thus k is continuous. Now we show that k is
uniform. Take any «<;€ K. Since (k,K) is a proximal Csiszar frame, there
is <€ K with S(<1s) <o S(<2). Since h o k is uniform, there is <1,€ £ with
S(<12) < hok(S(<,)) and hence h.(S(<2)) < haoh[k(S(<,))]- Since S(<io) <o
S(<1) for any a € S(<,), there is b € S(<11) with h,oh(k(a)) < k(b) and hence
hy 0 hk(S(<.))] < k(S(<1)). Since h is onto dense, S(h.(<2)) < h.(S(<2))
and so S(h.(<2)) < k(S(<1)). Thus k is uniform. O

Recall that for any Cauchy complete Csdszdr frame (L, L), ¢, : (L,L*) —
(L,L) is an isomorphism. Using this and the above lemma, we show that
cr: (cL,L*) — (L, L) is a coreflection of (L, £) in the category PCsFrm.

Theorem 3.5. The category CPCsFrm is coreflective in the category PCsFrm.

Proof. Take any proximal Csészéar frame (L, £). Clearly cr, : (cL,L*) — (L, £)
is a surjection and hence a uniform continuous homomorphism. Take any
Cauchy complete proximal Csdszar frame (M, M) and a uniform continu-
ous homomorphism h : M — L. We define h : ¢cM -~ cL by h(a,%,) =
(h(a),U{Zhz) : T <m a}). Then h is a map with hocy = cp o h. Let
k = hocp,. Since h: M — L is a uniform continuous homomorphism,
it is a Cauchy homomorphism and hence k¥ is a frame homomorphism by
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Theorem 3.1.7 in [5]. By Lemma 3.4, k£ is a uniform continuous homomor-
phism. Since ¢y, is dense and hence monomorphism, such a & is unique. Thus
cr, : (eL, L*) — (L, L) is a coreflection of (L, £) in the category PCsFrm. O

Lemma 3.6. If h: M — L is a dense frame homomorphism and < a meet-
complete sublattice of L x L, then h.(<) is also a meet-complete sublattice of
M x M.

Proof. Let S C L and suppose ah.(<)s for all s € S. Then there are z,,ys € M
such that h(a) < z, < y, and h.(ys) < bs. Since < is a meet-complete
sublattice of L x L and h. preserves arbitrary meets, h{a) < A,cg®s < Ayes¥s
and ha(Ayes¥s) < Agegbs- Hence ahu(<) Ayeg bs. O

Collecting the above, we have the following;:

Theorem 3.7. The category of Cauchy complete uniform Csdszdr frames and
uniform continuous homomorphisms is a coreflective subcategory of the category
of uniform Csdszdr frames and uniform continuous homomorphisms.
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