References
- S. Cho, E.-K. Jung, and D. Moon, A combinatorial proof of the reduction formula for Littlewood-Richardson coefficients, J. Combin. Theory Ser. A 114 (2007), no. 7, 1199-1219 https://doi.org/10.1016/j.jcta.2007.01.003
- S. Cho, E.-K. Jung, and D. Moon, Some cases of King's conjecture on factorization of Littlewood-Richardson polynomials, preprint, 2007
- I. Coskun, A Littlewood-Richardson rule for two-step flag varieties, Preprint, http: //www-math.mit.edu/-coskun/reviki51.pdf
- I. Coskun and R. Vakil, Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus, Preprint, http://www-math.mit.edu/-coskun/seattleoct17.pdf
- W. Fulton, Young Tableaux, With applications to representation theory and geometry. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997
- P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience John Wiley & Sons, New York, 1978
- P. Hanlon and S. Sundaram, On a bijection between Littlewood-Richardson fillings of conjugate shape, J. Combin. Theory Ser. A 60 (1992), no. 1, 1-18 https://doi.org/10.1016/0097-3165(92)90034-R
- J. Harris, Algebraic Geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995
- R. C. King, C. Tollu, and F. Toumazet, Stretched Littlewood-Richardson and Kostka coefficients, Symmetry in physics, CRM Proc. Lecture Notes, vol. 34, Amer. Math. Soc., Providence, RI, 2004, pp. 99-112
- R. C. King, C. Tollu, and F. Toumazet, The hive model and the polynomial nature of stretched Littlewood-Richardson coefficients, Sem. Lothar. Combin. 54A (2006), 1-19
- R. C. King, C. Tollu, and F. Toumazet, Factorization of Littlewood-Richardson coefficients, preprint, 2007
-
A. Knutson and T. Tao, The honeycomb model of
$GL_n(C)$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055-1090 https://doi.org/10.1090/S0894-0347-99-00299-4 -
A. Knutson, T. Tao, and C. Woodward, The honeycomb model of
$GL_n(C)$ tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), no. 1, 19-48 https://doi.org/10.1090/S0894-0347-03-00441-7 - D. E. Littlewood and A. R. Richardson, Group characters and algebra, Phi. Trans. A (1934), 99-141
- R. P. Stanley, Enumerative Combinatorics. Vol. 2, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999
- R. Vakil, A geometric Littlewood-Richardson rule, Appendix A written with A. Knutson. Ann. of Math. (2) 164 (2006), no. 2, 371-421 https://doi.org/10.4007/annals.2006.164.371
Cited by
- AN EXTENSION OF REDUCTION FORMULA FOR LITTLEWOOD-RICHARDSON COEFFICIENTS vol.47, pp.6, 2010, https://doi.org/10.4134/JKMS.2010.47.6.1197
- Reduction formulae of Littlewood–Richardson coefficients vol.46, pp.1-4, 2011, https://doi.org/10.1016/j.aam.2009.12.005
- A BIJECTIVE PROOF OF r = 1 REDUCTION FORMULA FOR LITTLEWOOD-RICHARDSON COEFFICIENTS vol.32, pp.2, 2010, https://doi.org/10.5831/HMJ.2010.32.2.271
- A Hive-Model Proof of the Second Reduction Formula of Littlewood-Richardson Coefficients vol.15, pp.2, 2011, https://doi.org/10.1007/s00026-011-0091-8