Ion Exchange of Copper from Sulphate Effluent using DOWEX G-26

황산용액(黃酸溶液)으로부터 DOWEX G-26에 의한 구리의 회수(回收)

  • Nguyen, Nghiem Van (Department of Chemical & Biological Engineering, College of Engineering, Chungnam National University, Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Jae-Chun (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jha, Manis Kumar (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Min-Seuk (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeong, Jin-Ki (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Hwang, Taek-Sung (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • ;
  • 이재천 (한국지질자원연구원 자원활용소재연구부) ;
  • ;
  • 김민석 (한국지질자원연구원 자원활용소재연구부) ;
  • 정진기 (한국지질자원연구원 자원활용소재연구부) ;
  • 황택성 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2008.08.27

Abstract

In view of the increasing importance of the waste recycling to meet the strict environmental regulations, the present investigation reports an adsorption process using cationic exchanger DOWEX G-26 for the recovery of copper from the synthetic sulphate solutions containing copper 0.3 to 0.5 mg/ml, similar to the CMP waste effluent of electronic industry. Various process parameters viz. contact time, solution pH, resin dose, and A/R ratio for elution were investigated to recover copper from the effluents. Complete adsorption of copper from the solution was achieved at equilibrium pH 2.5 and aqueous I resin (A/R) ratio of 100 ml/g in 14 minutes contact time. The adsorption of copper on DOWEX G-26 resin was found to follow the Langmuir isotherm and second order reaction. The copper was eluted from loaded resin with dilute sulphuric acid to produce copper-enriched solution.

본 연구는 전자산업으로부터 발생하는 CMP 폐수와 유사한 $0.3{\sim}0.5mg/ml$ 구리를 함유한 조제 황산 용액으로부터 DOWEX G-26 양이온 교환 수지를 사용한 구리 회수 공정 개발에 관한 것이다. 함구리 황산 용액으로부터 구리를 회수하기 위해 용액의 pH, 수지의 사용량, 용액의 산 농도, 용액과 수지의 접촉시간 등을 변수로 다양한 조건에서의 회수 실험을 실시하였다. 평형 pH 2.5, 용액/수지의 비 100mL/g 조건에서 14분의 접촉으로 99.99%의 구리가 흡착되었다. 구리의 흡착은 Langmuir isotherm을 따랐으며, 반응치수는 2차였다. 흡착된 구리는 묽은 황산에 의해 수지로부터 효과적으로 용리되었으며, 이로부터 농축용액을 만들 수 있었다.

Keywords

References

  1. Campbell, D. E., Nguyen, T., and James, D. K., 2001: Process for treating waste water containing copper, March 20, US Patent 6203705
  2. Gundogan, R., Acemioglu, B., and Alma, M. H., 2004 : Copper(II) Adsorption from Aqueous Solution by Herbaceous Peat, J. Colloid Inter. Sci., 269, pp. 303-309 https://doi.org/10.1016/S0021-9797(03)00762-8
  3. Jha, M. K. et al., 2007: Processing of rayon waste effluent for the recovery of zinc and separation of calcium using thiophosphinic extractant, Journal of Hazardous Materials, 145, pp. 221-226 https://doi.org/10.1016/j.jhazmat.2006.11.015
  4. Jha, M. K., et al., 2004: Studies on leaching and recycling of zinc from rayon waste sludge, Ind. Eng. Chem. Res., 43, pp.1284-1295 https://doi.org/10.1021/ie020949p
  5. Jha, M. K., Kumar, V., and Singh, R. J., 2002: Solvent extraction of zinc from the chloride solutions, Solvent Extraction and Ion Exchange, 20, pp. 389- 405 https://doi.org/10.1081/SEI-120004812
  6. Jha, M. K. et al., 2008: Treatment of rayon waste effluent for the removal of Zn and Ca using Indion BSR resin, Desalination, 228, pp. 97-107 https://doi.org/10.1016/j.desal.2007.08.010
  7. Demirbas, A., et al., 2005. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II) and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interf. Sci. 282, pp. 20-25 https://doi.org/10.1016/j.jcis.2004.08.147
  8. Rengaraj, S., et al., 2002: Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin, J. hazardous materials, 92-2, pp.185-198
  9. Omer, Y., Yalcin A., and Fuat, G., 2003: Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37(4), pp. 948-952 https://doi.org/10.1016/S0043-1354(02)00409-8
  10. Winterton, J. D., Darmawan, F., and Doyle, F. M., 2005: Investigation of ion exchange resin for use in treatment of semiconductor waste streams, Proceedings of EPD Congress 2005, TMS-2005, USA
  11. Lee, I. H., Kuan, Y-c., and Chern, J-.M., 2006: Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin. Journal of Hazardous. Materials, 138, pp. 549-559
  12. Jackson, E., 1986: Separation, purification and enrichment processes for treatment of pregnant leach and waste solutions. In: Extraction and Reclamation, Ellis Horwood Ltd, England: 1986
  13. Kentish, S. E. and Stevens G. W., 2001: Innovations in separation technology for the recycling and re-use of liquid waste streams. Chem. Eng. J., 84, pp.149-159 https://doi.org/10.1016/S1385-8947(01)00199-1
  14. Lagergren, S., 1898: About the theory of so called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24-4, pp.1-39
  15. Rengaraj, S., et al., 2007: Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis. J. Haz. Mat., 143, pp. 469-477 https://doi.org/10.1016/j.jhazmat.2006.09.064
  16. Baral, S. S., et al., 2007: Chromium removal by calcined bauxite, Biochem. Eng. J., 34, pp. 69-75 https://doi.org/10.1016/j.bej.2006.11.019
  17. Sahoo, N., et al., 2006: Chromium extraction from a chrome plating waste solution by ion exchange, Proc. Int. Conf. on Non-ferrous Metals, R. Bhima Rao, R.N. Prasad, C.R. Mishra and M.K.B. Nair, Eds., Bhubaneswar, India, 2006, pp. 6/1-6/10
  18. Padmavathy, V., Vasudevan, P., and Dhingra, S. C., 2003: Biosorption of nickel (II) ions on Baker's yeast, Process Biochem., 38, pp.1389-1395 https://doi.org/10.1016/S0032-9592(02)00168-1
  19. Chojnacka, K., 2005: Biosorption of Cr (III) ions by eggshells. J. Haz. Mat. 121, pp. 167-173 https://doi.org/10.1016/j.jhazmat.2005.02.004
  20. Bayat, B., 2002: Comparative study of adsorption properties of Turkish fly ashes, I, The case of nickel(II), copper(II) and zinc(II), J. hazardous Materials, B95, pp. 251-273
  21. Langmuir, I., 1918: The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40-9, pp. 1361-1403
  22. Haggerty G. M. and Bowman, R. S., 1994: Sorption of chromate and other inorganic anions by organo-zeolite, Environ. Sci. Technol., 28, pp. 452-458 https://doi.org/10.1021/es00052a017
  23. Benefield, L. D., Judkin, J. F., and Weand, B. L., 1982: Process chemistry for water and wastewater treatment, Prentice-Hall, Englewood Cliffs, NJ
  24. Smith, B., 1999: Infrared spectral interpretation: a systematic approach; CRC Press, USA
  25. Cortina.J. L., et al., 1994: Extraction studies of Zn (II), Cu (II) and Cd (II) with impregnated and Levextrel resins containing di (2-ethylhexyl) phosphoric acid (Lewatit 1026), Hydrometallurgy, 36, pp. 131-142 https://doi.org/10.1016/0304-386X(94)90001-9
  26. Mahmut Ozacar, Ayhan engil, Harun Turkmenler., 2008; Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin, Chemical Engineering Journal, doi:10.1016/j.cej.2007.12.005, In Press