Inhibitory Effects of Tannic acid on Human Skin Fibroblast Elastase Activity

사람의 섬유아세포 엘라스타제 활성에 대한 탄닌산의 억제 효과

  • Lee, Ju-Eun (Department of Biochemistry, College of Medicine, Chung-Ang University) ;
  • Kim, So-Young (Department of Biochemistry, College of Medicine, Chung-Ang University) ;
  • Kim, Su-Yeon (Department of Biochemistry, College of Medicine, Chung-Ang University) ;
  • Oh, Mi-Hee (Department of Biochemistry, College of Medicine, Chung-Ang University) ;
  • Yun, Hye-Young (Department of Biochemistry, College of Medicine, Chung-Ang University) ;
  • Baek, Kwang-Jin (Department of Biochemistry, College of Medicine, Chung-Ang University) ;
  • Kwon, Nyoun-Soo (Department of Biochemistry, College of Medicine, Chung-Ang University) ;
  • Kim, Dong-Seok (Department of Biochemistry, College of Medicine, Chung-Ang University)
  • 이주은 (중앙대학교 의과대학 생화학교실) ;
  • 김소영 (중앙대학교 의과대학 생화학교실) ;
  • 김수연 (중앙대학교 의과대학 생화학교실) ;
  • 오미희 (중앙대학교 의과대학 생화학교실) ;
  • 윤혜영 (중앙대학교 의과대학 생화학교실) ;
  • 백광진 (중앙대학교 의과대학 생화학교실) ;
  • 권년수 (중앙대학교 의과대학 생화학교실) ;
  • 김동석 (중앙대학교 의과대학 생화학교실)
  • Published : 2008.09.30

Abstract

Elastin is an important component of elastic fibers in the skin. Recently, many studies have reported that elastin is also involved In inhibiting or repairing wrinkle formation, although collagen is a major factor in the skin wrinkle formation. Elastase is a metalloproteinase which acts on degradation of elastin. It is known that elastase activity is increased by ultraviolet (UV) B radiation. Thus, Increased elastase activity could be the major reason for skin elasticity reduction and winkle formation. Tannic acid is a polyphenol found in various fruits and nuts. This molecule has a potent ability to eliminate reactive oxygen species and reactive nitrogen species. In the present study, we investigated whether tannic acid has effects on elastase activity and tropoelastin synthesis. Our results showed that tannic acid reduced elastase activity significantly in a dose-dependent manner. However, the expression of tropoelastin protein and mRNA was not significantly affected by tannic acid. From these results, we suggest that tannic acid may contribute to block tortuosity of elastic fibers by inhibiting elastase. Thus, tannic acid might be developed for a possible agent to Inhibit skin aging.

피부에서 엘라스틴(elastin)은 중요한 탄력섬유의 구성성분 중의 하나이다. 피부주름(skin wrinkle) 형성은 콜라겐(collagen)의 합성과 분해가 중요한 요인으로 작용한다고 알려져 있지만, 최근 많은 연구에서 엘라스틴의 재형성과 분해 또한 주름형성 기전에서 중요한 작용을 하는 것으로 보고되고 있다. 엘라스타제(elastase)는 엘라스틴을 분해하는 일종의 메탈로프로테이나제(metalloproteinase)이며, 자외선 B (ultraviolet B, UVB) 조사 후에 활성이 증가하는 것으로 알려져 있다. 따라서 증가된 엘라스타제의 활성은 피부의 탄력성 감소와 주름 형성의 주요한 원인이 될 것이다. 본 연구에서는 항산화 효과가 있으며, 각종 견과류나 과일에 함유된 폴리페놀(polyphenol)성분인 탄닌산(tannic acid)을 사람의 섬유아세포(CCD-25Sk fibroblasts)에 처리하여 엘라스타제 활성과 트로포엘라스틴 생성에 미치는 영향을 조사하였다. 탄닌산은 농도의존적으로 사람의 섬유아세포 엘라스타제 활성을 유의성 있게 억제시켰다. 그러나 트로포엘라스틴 합성이나 발현증가에는 유의성 있는 효과를 보이지 않았다. 이러한 결과들로부터 탄닌산은 엘라스타제의 활성을 억제시켜 엘라스틴의 3차원적 구조를 유지하는데 기여하는 것으로 사료된다. 따라서 탄닌산은 주름생성을 억제하는 물질로 개발 가능할 것으로 기대된다.

Keywords

References

  1. E. S. Chan, P. Fernandez, A. A. Merchant, M. C. Montesinos, S. Trzaska, A. Desai, C. F. Tung, D. N. Khoa, M. H. Pillinger, A. B. Reiss, M. Tomic-Canic, J. F. Chen, M. A. Schwarzschild, and B. N. Cronstein, Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma, Arthritis Rheum, 54, 2632 (2006) https://doi.org/10.1002/art.21974
  2. I. Ghersetich, P. Teofoli, M. Benci, and T. Lotti, Ultrastructural study of hyaluronic acid before and after the use of a pulsed electromagnetic field, electrorydesis, in the treatment of wrinkles, Int. J. Dermatol., 33, 661 (1994) https://doi.org/10.1111/j.1365-4362.1994.tb02933.x
  3. F. Antonicelli, G. Bellon, L. Debelle, and W. Hornebeck, Elastin-elastases and inflamm-aging, Curr. Top. Dev. Biol., 79, 99 (2007) https://doi.org/10.1016/S0070-2153(06)79005-6
  4. J. C. Isenburg, D. T. Simionescu, and N. R. Vyavahare, Elastin stabilization in cardiovascular implants: improved resistance to enzymatic degradation by treatment with tannic acid, Biomaterials, 25, 3293 (2004) https://doi.org/10.1016/j.biomaterials.2003.10.001
  5. S. Seite, H. Zucchi, D. Septier, S. Igondjo-Tchen, K. Senni, and G. Godeau, Elastin changes during chronological and photo-ageing: the important role of lysozyme, J. Eur. Acad. Dermatol. Venereol., 20, 980 (2006)
  6. J. Y. Seo, S. H. Lee, C. S. Youn, H. R. Choi, G. E. Rhie, K. H. Cho, K. H. Kim, K. C. Park, H. C. Eun, and J. H. Chung, Ultraviolet radiation increases tropoelastin mRNA expression in the epidermis of human skin in vivo, J. Invest. Dermatol., 116, 915 (2001) https://doi.org/10.1046/j.1523-1747.2001.01358.x
  7. N. Tsuji, S. Moriwaki, Y. Suzuki, Y. Takema, and G. Imokawa, The role of elastases secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity, Photochem. Photobiol., 74, 283 (2001) https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2
  8. S. Bunda, N. Kaviani, and A. Hinek, Fluctuations of intracellular iron modulate elastin production, J. Biol. Chem., 280, 2341 (2005) https://doi.org/10.1074/jbc.M409897200
  9. M. Hirose, T. Hoshiya, K. Akagi, M. Futakuchi, and N. Ito, Inhibition of mammary gland carcinogenesis by green tea catechins and other naturally occurring antioxidants in female Sprague-Dawley rats pretreated with 7,12-dimethylbenz[$\alpha$] anthracene, Cancer Lett., 83, 149 (1994) https://doi.org/10.1016/0304-3835(94)90312-3
  10. L. Ramanathan and N. P. Das, Inhibitory effects of some natural products on metal-induced lipid oxidation in cooked fish, Biol. Trace Elem. Res., 34, 35 (1992) https://doi.org/10.1007/BF02783896
  11. N. Fu, Protective effect of tannic acid against TPA- and cigarette smoke condensate-induced DNA strand breaks in human white cells and its antioxidant action, Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 13, 347 (1991)
  12. S. Y. Lee, D. D. Jang, R. M. Ahn, and H. S. Ann, Effects of tannic acid on the skin toxicity and heat shock protein induction by UVB irradiation in hairless mouse, Kor. J. Toxicol., 13, 79 (1997)
  13. E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, Topical application of 17$\beta$-estradiol increases extracellular matrix protein synthesis by stimulating TGF-$\beta$ signaling in aged human skin in vivo, J. Invest. Dermatol., 124, 1149 (2005) https://doi.org/10.1111/j.0022-202X.2005.23736.x
  14. G. Godeau and W. Hornebeck, Morphometric analysis of the degradation of human skin elastic fibres by human leukocyte elastase (EC 3-4-21-37) and human skin fibroblast elastase (EC 3-4-24), Pathol. Biol. (Paris), 36, 1133 (1988)
  15. R. Homsy, P. Pelletier-Lebon, J. M. Tixier, G. Godeau, L. Robert, and W. Hornebeck, Characterization of human skin fibroblasts elastase activity, J. Invest. Dermatol., 91, 472 (1988) https://doi.org/10.1111/1523-1747.ep12476608
  16. Z. Werb, M. J. Randa, J. H. Mckenrow, and R. A. Sandhaus, Elastase and elastin degradation, J. Invest. Dermatol., 79, 154 (1982) https://doi.org/10.1111/1523-1747.ep12546056
  17. D. B. Learn and S. J. Moloney, Numbers of murine dermal mast cells remain unchanged during chronic ultraviolet B irradiation, Photodermatol Photoimmunol Photomed., 8, 195 (1991)
  18. K. Tsukahara, Y. Takema, S. Moriwaki, N. Tsuji, Y. Suzuki, T. Fujimura, and G. Imokawa, Selective inhibition of skin fibroblast elastase elicits a concentration- dependent prevention of ultraviolet B-induced wrinkle formation, J. Invest. Dermatol., 117, 671 (2001) https://doi.org/10.1046/j.0022-202x.2001.01450.x
  19. F. Jimenez, T. F. Mitts, K. Liu, Y. Wang, and A. Hinek, Ellagic and tannic acids protect newly synthesized elastic fibers from premature enzymatic degradation in dermal fibroblast cultures, J. Invest. Dermatol., 126, 1272 (2006) https://doi.org/10.1038/sj.jid.5700285