Surface modification of Poly-(dimethylsiioxane) using polyelectrolYte multilayers and its characterization

다층의 고분자 전해질을 이용한 Poly-(dimetnylsiloxane)의 표면 개질 및 특성

  • Shim, Hyun-Woo (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Hee (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Ji-Hye (Department of Chemical Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 심현우 (충남대학교 공과대학 바이오응용화학부 화학공학과) ;
  • 이창희 (충남대학교 공과대학 바이오응용화학부 화학공학과) ;
  • 이지혜 (충남대학교 공과대학 바이오응용화학부 화학공학과) ;
  • 황택성 (충남대학교 공과대학 바이오응용화학부 화학공학과) ;
  • 이창수 (충남대학교 공과대학 바이오응용화학부 화학공학과)
  • Published : 2008.06.30

Abstract

A poly-(dimethylsiloxane) (PDMS) surface modified by the successive deposition of the polyelectrolytes, poly-(allylamine hydrochloride) (PAH), poly-(diallyldimethylammoniumchloride) (PDAC), poly-(4-ammonium styrenesulfonic acid) (PSS), and poly-(acrylic acid) (PAA), was presented for the application of selective cell immobilization. It is formed via electrostatic attraction between adjacent layers of opposite charge. The modified PDMS surface was examined using static contact angle measurements and fourier transform infrared (FT-IR) spectrophotometer. The wettability of the PDMS surface could be easily controlled and functionalized to be biocompatible through regulation of layer numbers. The modified PDMS surface provides appropriate environment for adhesion to cells, which is essential technology for cell patterning with high yield and viability in the patterning process. This method is reproducible, convenient, and rapid. It could be applied to the fabrication of biological sensing, patterning, microelectronics devices, screening system, and study of cell-surface interaction.

최근 마이크로 및 나노테크놀러지 (nanotechnology) 분야에서 가장 범용적으로 사용되고 있는 폴리머인 Poly-(dimethylsiloxane) (PDMS)의 표면을 다층의 고분자 전해질을 이용하여 표면 개질 및 그 특성을 보였다. 서로 상반되는 전하를 나타내는 고분자 전해질의 정전기적 인력을 통해 개질된 PDMS의 표면 성질은 접촉각 분석기를 이용한 접촉각의 측정 및 Fourier transform infrared (FT-lR) spectroscopy를 이용해 측정함으로써 확인할 수 있었다. 상기의 표면 개질 방법을 통하여 원하는 표면의 성질을 구현 할 수 있고 생체 물질의 부착을 위한 표면 또한 쉽게 만들 수 있다. 다층의 고분자 전해질로 개질된 PDMS 표면에 부착된 박테리아는 표면이 개질 되지 않은 PDMS 표면과 매우 높은 대조를 이루는 것을 확인 할 수 있었다. PDMS 표면에 세포 부착을 위한 경우 그것의 소수성인 표면 성질로 인한 제약을 본 연구에서 제안한 표면 개질 방법을 이용하여 해결 할 수 있었다. 상기 방법의 가장 큰 장점은 간단하고, 빠르게 표면을 개질 할 수 있는 방법이라는 점에 있으며, 고분자 전해질의 여러 조합을 통해 원하는 표면의 성질을 조절 할 수 있으므로 매우 중요한 기술로 생각된다. 본 연구에서 제안된 방법은 간단하고, 편리하며, 매우 재현성이 높고, 빠르게 구현할 수 있어서 이것을 이용하여 바이오 센서 및 바이오 칩, 랩온어 칩 분야, 패터닝, 세포와 표면 간의 상호작용 연구를 위한 응용 분야로의 적용이 될 것으로 기대된다.

Keywords

References

  1. Xia, Y. and Whitesides, G. M. (1998), Soft Lithography, Angew. Chem. Int. Ed. Engl. 37, 550-575 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  2. HilIborg, H. and Gedde, U. W. (1999), Hydrophobicity changes in silicone rubbers, IEEE Trans. Dielectr. Electr. Insul. 6, 703-717 https://doi.org/10.1109/94.798127
  3. McDonald, J. C. and Whitesides, G. M (2002), Poly(dimethylsiloxane) as a material for fabrication of microfluidic devices, Acc. Chem. Res. 35, 491-499 https://doi.org/10.1021/ar010110q
  4. Sia, S. K. and Whitesides, G. M. (2003), Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies, Electrophoresis 24, 3563-3576 https://doi.org/10.1002/elps.200305584
  5. McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., and Whitesides, G. M. (2000), Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27-40 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  6. Garcia, C. D. and Henry, C. S. (2006), Micro-molding for poly dimethylsiloxane) microchips, Methods Mol. Biol. 339, 27-36
  7. Dahlin, A. P., Bergstrom, S. K., Andren, P. E., Markides, K. E., and Bergquist, J. (2005), Poly(dimethylsiloxane)-based microchip for two-dimensional solid-phase extraction-capillary electrophoresis with an integrated electrospray emitter tip, Anal. Chem. 77, 5356-5363 https://doi.org/10.1021/ac050495g
  8. Lee, S., Jeong, W., and Beebe, D. J. (2003), Microfluidic valve with cored glass microneedle for microinjection, Lab. Chip. 3, 164-167 https://doi.org/10.1039/b305692a
  9. Marc A. Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen R. Quake (2000), Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113-116 https://doi.org/10.1126/science.288.5463.113
  10. Russell, M. T., Pingree, L. S., Hersam, M. c., and Marks, T. J. (2006), Microseale features and surface chemical fimctionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication, Langmuir 22, 6712-6718 https://doi.org/10.1021/la060319i
  11. Faid, K., Voicu, R., Bani-Yaghoub, M., Tremblay, R., Mealing, G., Py, C., and BaIjovanu, R. (2005), Rapid fabrication and chemical patteming of polymer microstructures and their applications as a platform for cell cultures, Biomed.Microdevices 7, 179-184 https://doi.org/10.1007/s10544-005-3023-8
  12. Trimbach, D. C., M. AI-Hussein, W. H. De Jeu, M. Decre, D. J. Broer, and C. W. Bastiaansen (2004), Hydrophilic elastomers for microcontact printing of polar inks, Langmuir 20, 4738-4742 https://doi.org/10.1021/la049716o
  13. Thorslund, S., Sanchez, J., Larsson, R., Nikolajeff, F., and Bergquist, J. (2005), Bioactive heparin immobilized onto microfluidic channels in poly(dimethylsiloxane) results in hydrophilic surface properties, Colloids Surf B Biointerfaces 46, 240-247 https://doi.org/10.1016/j.colsurfb.2005.10.009
  14. Vickers, J. A., Caulum, M. M., and Henry, C. S. (2006), Generation of hydrophilic poly(dimethylsiloxane) for high-perfotrnallce microchip electrophoresis, Anal. Chem. 78, 7446-7452 https://doi.org/10.1021/ac0609632
  15. Joubert, O., Hollinger, G., Fiori, C., Devine, R. P., and Won, B. S. (1991), Ultraviolet induced transformation of polysiloxane films, J. Appl. Phys. 69, 6647-6651 https://doi.org/10.1063/1.348880
  16. A. Klwnpp and H. Sigmund (1989), Photoinduced rransformation of polysiloxane layers to $SiO_2$, Appl. Surf. Sci. 43, 301-303 https://doi.org/10.1016/0169-4332(89)90229-8
  17. Escarpa, A., Gonzalez, M. C., Crevillen, A. G., and Blasco, A. J. (2007), CE microchips: an opened gate to food analysis, Electrophoresis 28, 1002-1011 https://doi.org/10.1002/elps.200600412
  18. Michelsen U. (2007), Microfluidics in medical applications, Med. Device Technol. 18, 12-14
  19. Huang, F. C., Liao, C. S., and Lee, G. B. (2006), An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection, Electrophoresis 27, 3297-305 https://doi.org/10.1002/elps.200600458
  20. Chung, B. G., Lin, F., and Jeon, N. L. (2006), A microfluidic multi-injector for gradient generation, Lab. Chip. 6, 764-768 https://doi.org/10.1039/b512667c
  21. Samel, B., Nock, V., Russom, A., Griss, P., and Stemme, G. (2007), A disposable lab-on-a-ehip platform with embedded fluid actuators for active nanoliter liquid handling, Biomed. Microdevices 9, 61-67 https://doi.org/10.1007/s10544-006-9015-5
  22. Dahan, E., Bize, V., Lehnert, T., and Horisberger, J. D. (2007), Integrated microsystem for non-invasive electrophysiological measurements on Xenopus oocytes, Biosensors and Bioelectronics 15, 3196-3202
  23. Johann, R. M., Baiotto, Ch., and Renaud, P. (2007), Micropattemed surfaces of pdms as growth templates for HEK 293 cells, Biomed. Microdevices 9, 475-485 https://doi.org/10.1007/s10544-007-9054-6
  24. Thangawng, A. L., Swartz, M. A., Glucksberg, M. R., and Ruoff, R. S. (2007), Bood-detach lithography: a method for micrq'nanolithography by precision pdms patterning, Small 3, 132-138 https://doi.org/10.1002/smll.200500418
  25. Park, K. H., Park, H. G., Kim, J. H., and Seong, K. H. (2006), Poly(dimethyl siloxane)-based protein chip for simultaneous detection of multiple samples: useof glycidyl methacrylate photopolymer for site-specific protein immobilization, Biosensors and Bioelectronics 15, 613-620
  26. Faure, K., Bias, M, Yassine, O., Delaunay, N., aetier, G., Albert, M., and Rocca, J. L. (2007), Electrochrornatography in poly(dimethyl)siloxane microchips using organic monolithic stationary phases, Electrophoresis 28, 1668-1673 https://doi.org/10.1002/elps.200600566
  27. Caglar, P., Tuneel, S. A., Malcik, N., Landers, J. P., and Ferrance, J. P. (2006), A microchip sensor for calciwn determination, Anal. Bioanal. Chem. 386, 1303-1312 https://doi.org/10.1007/s00216-006-0776-8
  28. Chaudhury, M. K. (1995), Self-assembled monolayers on polymer surfaces, Biosensors and Bioelectronics 10, 785-788 https://doi.org/10.1016/0956-5663(95)99216-8
  29. Wilson, D. J., Pond, R. C., and Williams, R. L. (2000), Wettability of chemically modified polymers: experiment and theory, Interface Sci. 8, 389-399 https://doi.org/10.1023/A:1008735929894
  30. Efimenko, K., Wallace, W. E., and Genzer, J. (2002), Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ulrraviolet and ltraviolet/ozone treatment, J. Colloid Interface Sci. 254, 306-315 https://doi.org/10.1006/jcis.2002.8594
  31. Wang, B., Chen, L., Abdulali-Kanji, Z., Horton, J. H., and Oleschuk, R. D. (2003), Aging effects on oxidized and amine-modified poly(dimethylsiloxane) surfaces studied with chemical force tirrations: effects on electroosmotic flow rate in microfluidic channels, Langmuir 19, 9792-9798 https://doi.org/10.1021/la0349424
  32. Monika schonhoff (2003), Self -assembled polyelectolyte multilayers, Current opinion in colloid and interface science 8, 86-95 https://doi.org/10.1016/S1359-0294(03)00003-7
  33. Choi, J. and Rubner, M. F. (2005), Influence of the dgree of ionization on weak polyelectrolyte multilayer assembly, Macromolecules 38, 116-124 https://doi.org/10.1021/ma048596o
  34. Dobrynin, A. V. and Rubirntein, M. (2002), Adsorption of hydrophobic polyelectrolytes at oppositely charged surfaces, Macromolecules 35, 2754-2768 https://doi.org/10.1021/ma0114943
  35. H. W. Shim, J. H. Lee, and C. S. Lee (2006), Microcontact printing of bacteria using hybrid agarose gel stamp, Korean J. Biotechnol. Bioeng. 21, 273-278
  36. Kim, J., Chaudhury, M. K., and Owen, M. J. (2000), Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge, J. Colloid Interface Sci. 226, 231-236 https://doi.org/10.1006/jcis.2000.6817
  37. I-J. Chen and E. Lindner (2007), The stability of radio-frequency plasma-treated polydimethylsioxane surfaces, Langmuir 23, 3118-3122 https://doi.org/10.1021/la0627720
  38. D. S. Salloum and J. B. Schlenoff (2004), Protein adsorption modalities on polyelectrolyte multilayers, Biomacromolecules 5, 1089-1096 https://doi.org/10.1021/bm034522t
  39. F. Caruso, D. N. Furlong, D. Ariga, I. Ichinose, and T. Kunitate (1998), Characterization of polyelectolyte-protein multilayerfilms by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection-absorption spectroscopy, Langmuir 14, 4559-4565 https://doi.org/10.1021/la971288h
  40. K. Katafiri, A. Matsuda, and F. Caruso (2006), Effect of uv-irradiation on polyelectrolyte multilayered films and hollow capsules prepared by layer-by-Iayer assembly, Macromolecules 39, 8067-8074 https://doi.org/10.1021/ma0615598