Browse > Article

Surface modification of Poly-(dimethylsiioxane) using polyelectrolYte multilayers and its characterization  

Shim, Hyun-Woo (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Hee (Department of Chemical Engineering, Chungnam National University)
Lee, Ji-Hye (Department of Chemical Engineering, Chungnam National University)
Hwang, Taek-Sung (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
KSBB Journal / v.23, no.3, 2008 , pp. 263-270 More about this Journal
Abstract
A poly-(dimethylsiloxane) (PDMS) surface modified by the successive deposition of the polyelectrolytes, poly-(allylamine hydrochloride) (PAH), poly-(diallyldimethylammoniumchloride) (PDAC), poly-(4-ammonium styrenesulfonic acid) (PSS), and poly-(acrylic acid) (PAA), was presented for the application of selective cell immobilization. It is formed via electrostatic attraction between adjacent layers of opposite charge. The modified PDMS surface was examined using static contact angle measurements and fourier transform infrared (FT-IR) spectrophotometer. The wettability of the PDMS surface could be easily controlled and functionalized to be biocompatible through regulation of layer numbers. The modified PDMS surface provides appropriate environment for adhesion to cells, which is essential technology for cell patterning with high yield and viability in the patterning process. This method is reproducible, convenient, and rapid. It could be applied to the fabrication of biological sensing, patterning, microelectronics devices, screening system, and study of cell-surface interaction.
Keywords
poly-(dimethylsiloxane); polyelectrolyte multilayers; surface modification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Escarpa, A., Gonzalez, M. C., Crevillen, A. G., and Blasco, A. J. (2007), CE microchips: an opened gate to food analysis, Electrophoresis 28, 1002-1011   DOI   ScienceOn
2 Efimenko, K., Wallace, W. E., and Genzer, J. (2002), Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ulrraviolet and ltraviolet/ozone treatment, J. Colloid Interface Sci. 254, 306-315   DOI   ScienceOn
3 Russell, M. T., Pingree, L. S., Hersam, M. c., and Marks, T. J. (2006), Microseale features and surface chemical fimctionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication, Langmuir 22, 6712-6718   DOI   ScienceOn
4 Huang, F. C., Liao, C. S., and Lee, G. B. (2006), An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection, Electrophoresis 27, 3297-305   DOI   ScienceOn
5 Thorslund, S., Sanchez, J., Larsson, R., Nikolajeff, F., and Bergquist, J. (2005), Bioactive heparin immobilized onto microfluidic channels in poly(dimethylsiloxane) results in hydrophilic surface properties, Colloids Surf B Biointerfaces 46, 240-247   DOI   ScienceOn
6 Faure, K., Bias, M, Yassine, O., Delaunay, N., aetier, G., Albert, M., and Rocca, J. L. (2007), Electrochrornatography in poly(dimethyl)siloxane microchips using organic monolithic stationary phases, Electrophoresis 28, 1668-1673   DOI   ScienceOn
7 Sia, S. K. and Whitesides, G. M. (2003), Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies, Electrophoresis 24, 3563-3576   DOI   ScienceOn
8 Lee, S., Jeong, W., and Beebe, D. J. (2003), Microfluidic valve with cored glass microneedle for microinjection, Lab. Chip. 3, 164-167   DOI   ScienceOn
9 Chaudhury, M. K. (1995), Self-assembled monolayers on polymer surfaces, Biosensors and Bioelectronics 10, 785-788   DOI   ScienceOn
10 Monika schonhoff (2003), Self -assembled polyelectolyte multilayers, Current opinion in colloid and interface science 8, 86-95   DOI   ScienceOn
11 F. Caruso, D. N. Furlong, D. Ariga, I. Ichinose, and T. Kunitate (1998), Characterization of polyelectolyte-protein multilayerfilms by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection-absorption spectroscopy, Langmuir 14, 4559-4565   DOI   ScienceOn
12 Xia, Y. and Whitesides, G. M. (1998), Soft Lithography, Angew. Chem. Int. Ed. Engl. 37, 550-575   DOI   ScienceOn
13 McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., and Whitesides, G. M. (2000), Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27-40   DOI   ScienceOn
14 A. Klwnpp and H. Sigmund (1989), Photoinduced rransformation of polysiloxane layers to $SiO_2$, Appl. Surf. Sci. 43, 301-303   DOI   ScienceOn
15 Chung, B. G., Lin, F., and Jeon, N. L. (2006), A microfluidic multi-injector for gradient generation, Lab. Chip. 6, 764-768   DOI   ScienceOn
16 Kim, J., Chaudhury, M. K., and Owen, M. J. (2000), Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge, J. Colloid Interface Sci. 226, 231-236   DOI   ScienceOn
17 Joubert, O., Hollinger, G., Fiori, C., Devine, R. P., and Won, B. S. (1991), Ultraviolet induced transformation of polysiloxane films, J. Appl. Phys. 69, 6647-6651   DOI
18 H. W. Shim, J. H. Lee, and C. S. Lee (2006), Microcontact printing of bacteria using hybrid agarose gel stamp, Korean J. Biotechnol. Bioeng. 21, 273-278   과학기술학회마을
19 McDonald, J. C. and Whitesides, G. M (2002), Poly(dimethylsiloxane) as a material for fabrication of microfluidic devices, Acc. Chem. Res. 35, 491-499   DOI   ScienceOn
20 I-J. Chen and E. Lindner (2007), The stability of radio-frequency plasma-treated polydimethylsioxane surfaces, Langmuir 23, 3118-3122   DOI
21 K. Katafiri, A. Matsuda, and F. Caruso (2006), Effect of uv-irradiation on polyelectrolyte multilayered films and hollow capsules prepared by layer-by-Iayer assembly, Macromolecules 39, 8067-8074   DOI   ScienceOn
22 Samel, B., Nock, V., Russom, A., Griss, P., and Stemme, G. (2007), A disposable lab-on-a-ehip platform with embedded fluid actuators for active nanoliter liquid handling, Biomed. Microdevices 9, 61-67   DOI
23 Thangawng, A. L., Swartz, M. A., Glucksberg, M. R., and Ruoff, R. S. (2007), Bood-detach lithography: a method for micrq'nanolithography by precision pdms patterning, Small 3, 132-138   DOI   ScienceOn
24 Faid, K., Voicu, R., Bani-Yaghoub, M., Tremblay, R., Mealing, G., Py, C., and BaIjovanu, R. (2005), Rapid fabrication and chemical patteming of polymer microstructures and their applications as a platform for cell cultures, Biomed.Microdevices 7, 179-184   DOI   ScienceOn
25 HilIborg, H. and Gedde, U. W. (1999), Hydrophobicity changes in silicone rubbers, IEEE Trans. Dielectr. Electr. Insul. 6, 703-717   DOI   ScienceOn
26 Garcia, C. D. and Henry, C. S. (2006), Micro-molding for poly dimethylsiloxane) microchips, Methods Mol. Biol. 339, 27-36
27 Marc A. Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen R. Quake (2000), Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113-116   DOI   ScienceOn
28 D. S. Salloum and J. B. Schlenoff (2004), Protein adsorption modalities on polyelectrolyte multilayers, Biomacromolecules 5, 1089-1096   DOI   ScienceOn
29 Wilson, D. J., Pond, R. C., and Williams, R. L. (2000), Wettability of chemically modified polymers: experiment and theory, Interface Sci. 8, 389-399   DOI   ScienceOn
30 Choi, J. and Rubner, M. F. (2005), Influence of the dgree of ionization on weak polyelectrolyte multilayer assembly, Macromolecules 38, 116-124   DOI   ScienceOn
31 Trimbach, D. C., M. AI-Hussein, W. H. De Jeu, M. Decre, D. J. Broer, and C. W. Bastiaansen (2004), Hydrophilic elastomers for microcontact printing of polar inks, Langmuir 20, 4738-4742   DOI   ScienceOn
32 Vickers, J. A., Caulum, M. M., and Henry, C. S. (2006), Generation of hydrophilic poly(dimethylsiloxane) for high-perfotrnallce microchip electrophoresis, Anal. Chem. 78, 7446-7452   DOI   ScienceOn
33 Caglar, P., Tuneel, S. A., Malcik, N., Landers, J. P., and Ferrance, J. P. (2006), A microchip sensor for calciwn determination, Anal. Bioanal. Chem. 386, 1303-1312   DOI
34 Dobrynin, A. V. and Rubirntein, M. (2002), Adsorption of hydrophobic polyelectrolytes at oppositely charged surfaces, Macromolecules 35, 2754-2768   DOI   ScienceOn
35 Michelsen U. (2007), Microfluidics in medical applications, Med. Device Technol. 18, 12-14
36 Johann, R. M., Baiotto, Ch., and Renaud, P. (2007), Micropattemed surfaces of pdms as growth templates for HEK 293 cells, Biomed. Microdevices 9, 475-485   DOI
37 Park, K. H., Park, H. G., Kim, J. H., and Seong, K. H. (2006), Poly(dimethyl siloxane)-based protein chip for simultaneous detection of multiple samples: useof glycidyl methacrylate photopolymer for site-specific protein immobilization, Biosensors and Bioelectronics 15, 613-620
38 Dahan, E., Bize, V., Lehnert, T., and Horisberger, J. D. (2007), Integrated microsystem for non-invasive electrophysiological measurements on Xenopus oocytes, Biosensors and Bioelectronics 15, 3196-3202
39 Dahlin, A. P., Bergstrom, S. K., Andren, P. E., Markides, K. E., and Bergquist, J. (2005), Poly(dimethylsiloxane)-based microchip for two-dimensional solid-phase extraction-capillary electrophoresis with an integrated electrospray emitter tip, Anal. Chem. 77, 5356-5363   DOI   ScienceOn
40 Wang, B., Chen, L., Abdulali-Kanji, Z., Horton, J. H., and Oleschuk, R. D. (2003), Aging effects on oxidized and amine-modified poly(dimethylsiloxane) surfaces studied with chemical force tirrations: effects on electroosmotic flow rate in microfluidic channels, Langmuir 19, 9792-9798   DOI   ScienceOn