Adhesion properties of Microorganisms onto surfaces of phosphorylcholine(PC)-modified copolymer for sensor applications

센서 응용을 위해 포스포릴 콜린으로 개질된 고분자 막 표면의 미생물 점착 특성

  • Kim, Sun-Yong (Department of Material and Biochemical Engineering, Chonnam National University) ;
  • Sohn, Ok-Jae (Department of Material and Biochemical Engineering, Chonnam National University) ;
  • Chae, Kyu-Ho (School of Applied Chemical Engineering, Chonnam National University) ;
  • Rhee, Jong-II (School of Applied Chemical Engineering, Chonnam National University)
  • 김선용 (전남대학교 공과대학 물질.생물화공과) ;
  • 손옥재 (전남대학교 공과대학 물질.생물화공과) ;
  • 채규호 (전남대학교 공과대학 응용화학공학부) ;
  • 이종일 (전남대학교 공과대학 응용화학공학부)
  • Published : 2008.06.30

Abstract

In this study we have studied adhesive properties of various microorganisms onto surfaces of phosphorylcholine-based copolymer for the application of optical biosensors. Three microorganisms, E.coli JM109, B.cereus 318, P.pastoris X-33 were cultivated in confocal cultivation dishes with glass surface, respectively. The glass surface was coated with copolymer containing 0% 5% and 10% MPC (2-methacryloxyethyl phosphorylcholine). After cultivation, culture medium was discarded and adhered microorganisms were dyed by gram staining method. Adhered microorganisms were analyzed using an optical microscope and scanning electronic microscope (SEM). A great number of microorganisms, $2-3{\times}10^3/mm^2$ were adhered on the surfaces of glass and copolymer membrane without MPC. But the antifouling effects of copolymer containing 5% and 10% phosphorylcholine were large, that microorganisms of less than $50-100/mm^2$ were attached on the copolymer membranes. Thus, the copolymer containing phosphorylcholine is very useful as an antifouling coating material for optical biosensor.

본 연구에서는 포스포릴콜린 (MPC)을 이용하여 미생물의 점착현상을 방지하는 고분자 공중합체 막을 제조하여 각종 미생물에 대한 비점착 특성을 조사하였다. 즉, 유리, MPC를 함유하지 않은 PGMA, 그리고 5%, 10% MPC 함유량의 PGMA를 사용하여 E.coli. B.cereus, P.pastoris등 미생물의 점착특성을 그람염색과 SEM촬영을 통해 연구하였다. 그람음성 미생물 E.coli JM109는 MPC 개질 고분자 공중합체의 표면에 점착된 세포수가 유리나 MPC를 함유하지 않은 PGMA에 비해 96.5% 이상 감소하였다. 또한 그람양성 미생물 Bcereus 318은 유리 표면에 비해 MPC가 함유된 고분자 공중합체 표면에 점착된 세포수가 95% 이상 감소하였으며, 효모의 일종인 P.pastoris X-33은 유리나 MPC를 함유하지 않은 PGMA에 비해 MPC가 함유된 고분자 공중합체 표면에 92%이상 점착되지 않았다 한편, MPC 함량에 따른 고분자 공중합체 막에 점착된 미생물의 갯수는 MPC 함량이 각각 5%, 10%인 공중합체 표면에서 큰 차이를 보이지 않았으므로 일정량 이상의 MPC가 고분자 공중합체 내에 함유될 때 비점착 효과는 크게 영향을 받지 않음을 알 수 있었다. 본 연구의 결과로부터 우수한 비점착 효과를 가진 MPC 개질 고분자 공중합체를 광학센서등의 검지부 표면에 코팅할 경우 미생물, 단백질등의 점착으로 인한 센서의 성능저하를 방지할 수 있을 것으로 생각된다.

Keywords

References

  1. B. T. Watennann and B. Daehre, S. Sievers (2005), Bioassays and selected chemical analysis of biocide-free antifouling coating, Chemosphere 60, 1530-1541 https://doi.org/10.1016/j.chemosphere.2005.02.066
  2. L. Yu, T. Lu (2001), Detachment force and their influence on the structure and metabolic behaviour of biofilms, World Journal of Microbiology and Biotechnology 17, 111-117 https://doi.org/10.1023/A:1016625209839
  3. R. Murga, J. M. Miller, and R. M. Donlan (2001), Biofilm fonnation by gram-nagative bacteria on central venous catheter connectors: effect of conditioning films in a laboratory model, Journal of Clinical Microbiology 39, 2294-2297 https://doi.org/10.1128/JCM.39.6.2294-2297.2001
  4. J. H. Lee, P. Kopeckova, J. Kopecek, and J. D. Andrade (1990) Surface prope rties of copolymers of alkyl methylacrylates with, methoxy (polyethylene oxide) methylacrylates and their application as protein-resistant coatings, Biometerials, 11, 455-464 https://doi.org/10.1016/0142-9612(90)90058-X
  5. A. Desai, J. Hansford, and L. Leoni (2000), Nanoporous anti-fouling silicon membranes for biosensor applications, Biosensors and Bioelectronics 15, 453-462 https://doi.org/10.1016/S0956-5663(00)00088-9
  6. L. Ji, J. Zhou (2006), Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors, Journal of Membrane Science 276, 168-177 https://doi.org/10.1016/j.memsci.2005.09.045
  7. P. S. Grant, S. Kaul, S. chinnayelka, and M. J. Mcshane (2003), In 25th Annual International Conference of The IEEE EMBS, Mexico, 17-21
  8. J. Novick. and S. Doridick (2002), Protein-containing hydrophobic coatings and films, Biomaterials 23, 441-448 https://doi.org/10.1016/S0142-9612(01)00123-5
  9. L. D. Chambers, K. R. Stokes, F. C. Walsh, and R. J. K. Wood (2006), Modern approaches to marine antifouling coating, Surface and Coatings Technology 201, 3642-3652 https://doi.org/10.1016/j.surfcoat.2006.08.129
  10. K. H. Chae, Y. M. Jang, Y. H. Kim, O. J. Sohn, and J. I. Rhee (2007), Antifouling epoxy coating for optical biosensor application based on phosphorylcholine, Sensors and Actuators B 124, 153-160 https://doi.org/10.1016/j.snb.2006.12.012
  11. G. Bolton, D. Lacasse, and R. Kuriyel (2005), Conbined models of membrane fouling: Development and application to micromtration and ultrafiltration of biological fluid, Journal of Membrane Science 777, 75-84
  12. N. Hayase, T. Sogabe, and R. Itou (2003), Polymer film produced by a marine bacterium, Journal of Bioscience and Bioengineering 95, 72-76 https://doi.org/10.1016/S1389-1723(03)80151-2
  13. P. Yazdankhah, H. Sorum, J. S. Larsen, and G. Gogstad (2001), Use of magnetic beads for gram staining of bacteria in aqueous suspension, Journal of Microbiological Method 47, 369-371 https://doi.org/10.1016/S0167-7012(01)00350-5
  14. F. Fay, I. Linossier, and V. Langlois (2005), SEM and EDX analysis: Two powerful techniques for the study of antifouling paint, Progress in Oraganic Coatings 54, 216-233