Variation in Nitrate Contamination of Shallow Groundwater in a Farmland in Gyeonggi-do, Korea

경기도 지역 농경지의 천부 지하수 내 질산염 오염특성과 변화

  • Lee, Eun-Jae (Department of Earth System Sciences, Yonsei University) ;
  • Woo, Nam-Chil (Department of Earth System Sciences, Yonsei University) ;
  • Lee, Byung-Sun (Rural Research Institute, Korea Rural Community & Agriculture Corporation) ;
  • Kim, Yang-Bin (Rural Research Institute, Korea Rural Community & Agriculture Corporation)
  • 이은재 (연세대학교 지구시스템과학과) ;
  • 우남칠 (연세대학교 지구시스템과학과) ;
  • 이병선 (한국농촌공사 농어촌연구원) ;
  • 김양빈 (한국농촌공사 농어촌연구원)
  • Published : 2008.08.28

Abstract

Hydrogeochemistry of groundwater was studied in order to identify the influence of cow manure, distributed to a farmland as organic fertilizer, on nitrate concentrations in shallow groundwater and its spatio-temporal variations. From monitoring wells, water levels were measured using automatic data loggers, and water samples collected and analyzed in Feb., April, June and Oct. 2007. The average electric conductivity and concentration of nitrate in the groundwater show the highest levels in April and decline in subsequent sampling times. Decreases in dissolved oxygen(DO) and nitrate concentrations from April to Oct. and corresponding increases in $HCO_3$ concentrations indicate denitrification processes by microorganisms. Spatial variation of nitrate concentration appeared to be affected by the redox conditions of groundwater controlled by geochemical reactions of Mn, Fe and DOC contents.

이 연구는 우리나라의 농촌지역에서 유기비료로 살포되는 축산 분뇨가 농경지 지하수의 수질과 오염에 미치는 영향을 시공간적 변화를 중심으로 규명하기 위하여 수행되었다. 연구는 경기도의 한 농경지에서 200길 2월, 4월, 6월, 10월에는 관측정을 통한 지하수위 관측과 함께 지하수질 모니터링을 수행하였다. 그 결과 봄-여름-가을로 이어지는 계절과 축분을 뿌리는 시기에 따라서 지하수의 수질과 오염현상의 변화는 축분을 가장 많이 뿌리는 시기인 4월에 질산성 질소 농도가 가장 높게 나타났다. 그리고 지하수 내 Mn, Fe 등의 농도와 용존 유기물함량(DOC) 등을 모니터링 함으로써 천부 지하수의 산화-환원상태와 대수층 내 미생물의 활성도가 연구부지 지하수 내 질산성 질소의 농도변화에 가장 중요한 요인으로 작용하는 것으로 유추할 수 있다.

Keywords

References

  1. Appelo, C.A.J. and Postma D. (1999) Geochemistry, groundwater and pollution. 4th (ed.), A.A. Balkema, Rotterdam. p. 239-295
  2. ASIS (2008) Soil of Korea, http://asis.rda.go.kr/map/map_main.asp
  3. Back, W. and I. Barnes (1965) Relation of electrochemical potentials and iron content to groundwater flow patterns. U.S. Geol. Surv, Prof. Pap. 498-C
  4. Behnke, J. (1975) Summary of the biochemistry of nitrogen compounds in ground water. Jour. Hydrol., v. 27, p. 155-167 https://doi.org/10.1016/0022-1694(75)90104-3
  5. Baas-Becking, L.G.M., Kaplan, I.R. and Moore, O. (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. Jour. Geol., v. 68, p. 243-284 https://doi.org/10.1086/626659
  6. Brandy, N.C. and Weil, R.R. (2002) The nature properties of soils. 13th(ed.). Prentice Hall, New Jersey. p. 592-637
  7. Canter, L.W. (1997) Nitrate in groundwater. CRC Press, Boca Raton. p. 1-109
  8. Chandler, J. (1989) Nitrate in Water. Water Well Jour., v. 43, p. 45-47
  9. Chung, S.W., Woo, N.C. and Lee, K.S. (2004) Temporal & spatial variations of groundwater quality in Hanlim, Jeju island. Jour. Geol. Soc. Korea, v. 40, p. 537-558
  10. Davis, J.C. (1986) Statistics and data analysis in geology. 2nd(ed.). John Wiley & Sons, New York. 204p
  11. Freeze, R.A. and Cheery, J.A. (1979) Groundwater. Englewood Cliffs, New Jersey, Prentice Hall, 604p
  12. Fennesy, M.S. and Cronk, J.K. (1997) The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate. Crit. Rev. Environ. Sci. Technol., v. 27, p. 285-317 https://doi.org/10.1080/10643389709388502
  13. Fernando, T.W. and David, N.L. (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res., v. 39, p. 3-16 https://doi.org/10.1016/j.watres.2004.07.026
  14. Jeen, S.W., Kim, J.M., Ko, K.S., Yum, B.W. and Chang, H.W. (2001) Hydrogeochemical characteristics of groundwater in a mid-western coastal aquifer system, Korea. Geosci. Jour., v. 5, p. 339-348 https://doi.org/10.1007/BF02912705
  15. Keeney, D.R. (1986) Sources of nitrate to ground water. Crit. Rev. Environ. Control, v. 16, p. 257-304 https://doi.org/10.1080/10643388609381748
  16. Kim, K.H., Yun, S.T., Chae, G.T., Choi, B.Y., Kim, S.O., Kim, K., Kim, H.S. and Lee, C.W. (2002) Nitrate contamination of alluvial groundwaters in the Keum River watershed area: Source and behaviors of nitrate, and suggestion to Secure Water Supply. Jour. Eng. Geol., v. 12, p. 471-484
  17. Kim, Y.T. and Woo, N.C. (2003) Nitrte contamination of shallow groundwater in an agricultural area having intensive livestock facilities. Jour. KoSSGE, v. 8, p. 57-67
  18. KLAW (2008) Regulation for Drinking Water Standards and Examination, http://www.klaw.go.kr/DRF/MDRFLawService.jsp?OC=me&ID=07134
  19. Langmuir, D. (1997) Aqueous environmental geochemistry. Prentice Hall, New Jersey, 420p
  20. Lee, J.Y. and Hahn, J.S. (2006) Characterization of groundwater temperature obtained from the Korean national groundwater monitoring stations: Implications for heat pumps. Jour. Hydrol., v.329, p. 514-526 https://doi.org/10.1016/j.jhydrol.2006.03.007
  21. Lee, J.Y. and Lee, K.K. (2000) Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. Jour. Hydrol., v.229, p. 190-201 https://doi.org/10.1016/S0022-1694(00)00158-X
  22. Maxy, K.F. (1950) Report on Relation of Nitrate Nitrogen Concentration in Well Waters to the Occurrence of Methemoglobinemia in Infants. Acad. Sci. Res. Council Saint. Eng. Environ. Bull, p. 264
  23. Medison, R.J. and Brunett, J.O. (1985) Overview of the occurrence of nitrate in the ground water of the United States, National Water Summary 1984 Hydrologic Events, Selected Water-Quality Trends, and Ground-water Resources, U.S. Geological Survey Water-Supply Paper 2275, p. 93-105
  24. Michael, D.T., Moria, E.C., Jennifer, S.M., James, M.S. and Erin, P.E. (2002) Estimating aquifer sensitivity to nitrate contamination using geochemical information. Ground Water Monit. Rem., v. 22, p. 100-108 https://doi.org/10.1111/j.1745-6592.2002.tb00776.x
  25. Min, K.D., Seo, J.H. and Kwon, B.D. (2002) Basic geophysics. Woo-seung press, p. 201-223
  26. MOE (2006) 2005 Water Supply Statistics. Ministry of Environment, Republic of Korea
  27. MOE (2007) Management Report of Groundwater Quality Monitoring Network 2006
  28. Mohamed, M.A.A., Terao, H., Suzuki, R., Babikar, I.S., Ohta, K., Kaori, K. and Kato, K. (2003) Natural denitrification in the Kakamifahara groundwater basin, Gifu prefecture, central Japan. Sci. Total Environ., v.307, p. 191-201 https://doi.org/10.1016/S0048-9697(02)00536-3
  29. Moon, S.K., Woo, N.C. and Lee, K.S. (2004) Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Jour. Hydrol., v.292, p. 198-209 https://doi.org/10.1016/j.jhydrol.2003.12.030
  30. Mueller, D.K. and Helsel, D.R. (1996) Nutrients in the nation's water-Too much of a good thing?, U.S. Geological Survey circular 1136
  31. Oh, I.S. and Yoon, Y.Y. (1972) Explanation of geological map: Suwon SHEET-6625IV. Korea Geological Survey
  32. Pagacova, P., Blastakova, A. and Drtil, M. (2008) Dangerous Pollutants (Xenobiotics) in Urban Water Cycle. Springer Netherlands, p. 287-296
  33. Reddy, K.R. and Patrick, W.H. (1981) Nitrogen transformation and loss in flooded soils and sediments. CRC Crit. Rev. Environ. Control, v. 13, p. 273-303 https://doi.org/10.1080/10643388409381709
  34. Siemens, J., Haas, M. and Martin K. (2003) Dissolved organic matter induced denitrification in subsoils and aquifers? Geoderma, v. 113, p. 253-271 https://doi.org/10.1016/S0016-7061(02)00364-6
  35. Sung, I.H., Choo, C.O., Cho, B.W., Lee, B.D., Kim, T.K. and Lee, I.H. (1998) Hydrochemical properties of the groundwater used for the natural mineral waters in the prechambrian metamorphic terrain, Korea. Jour. KoSSGE, v. 5, p. 203-209
  36. U.S. EPA (1994) Nirogen control. Technomic publishing company, Inc., Lancaster, Pennsylvania, p. 1-22
  37. WHO (1984) Health hazards from nitrate in drinking water-Report on a WHO Meeting in Copenhagen, March 5-9