DOI QR코드

DOI QR Code

FIXED POINTS, EIGENVALUES AND SURJECTIVITY

  • Kim, In-Sook (Department of Mathematics Sungkyunkwan University)
  • Published : 2008.01.31

Abstract

We prove that a countably condensing operator defined on a closed wedge in a Banach space has a fixed point if it is strictly quasibounded, by using an index theory for such operators. From this, the existence of eigenvalues and surjectivity are deduced.

Keywords

References

  1. J. M. Ayerbe Toledano, T. Dominguez Benavides, and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhauser, Basel, 1997
  2. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985
  3. S. Hahn, Homoomorphieaussagen fur k-verdichtende Vektorfelder, Comment. Math. Univ. Carolin. 21 (1980), no. 3, 563-572
  4. G. Isac and S. Z. Nemeth, Scalar derivatives and scalar asymptotic derivatives. An Altman type fixed point theorem on convex cones and some applications, J. Math. Anal. Appl. 290 (2004), no. 2, 452-468 https://doi.org/10.1016/j.jmaa.2003.10.030
  5. G. Isac and S. Z. Nemeth, Fixed points and positive eigenvalues for nonlinear operators, J. Math. Anal. Appl. 314 (2006), no. 2, 500-512 https://doi.org/10.1016/j.jmaa.2005.04.006
  6. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43 https://doi.org/10.2307/1993352
  7. H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), no. 5, 985-999 https://doi.org/10.1016/0362-546X(80)90010-3
  8. R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. (4) 89 (1971), 217-258 https://doi.org/10.1007/BF02414948
  9. W. V. Petryshyn, Remarks on condensing and k-set-contractive mappings, J. Math. Anal. Appl. 39 (1972), 717-741 https://doi.org/10.1016/0022-247X(72)90194-1
  10. W. V. Petryshyn and P. M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25 https://doi.org/10.2307/1996791
  11. M. Vath, Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 341-363 https://doi.org/10.12775/TMNA.1999.018
  12. A. Vignoli, On quasibounded mappings and nonlinear functional equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 50 (1971), 114-117
  13. E. Zeidler, Nonlinear Functional Analysis and its Applications. I., Springer-Verlag, New York, 1986

Cited by

  1. Fixed points, eigenvalues and surjectivity for (ws)-compact operators on unbounded convex sets vol.11, pp.1, 2013, https://doi.org/10.2478/s11533-012-0079-6