DOI QR코드

DOI QR Code

FOCK SPACE REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS AND GENERALIZED LASCOUX-LECLERC-THIBON ALGORITHM

  • Kang, Seok-Jin (Department of Mathematical Sciences Seoul National University) ;
  • Kwon, Jae-Hoon (Department of Mathematics University of Seoul)
  • Published : 2008.07.31

Abstract

We construct the Fock space representations of classical quantum affine algebras using combinatorics of Young walls. We also show that the crystal graphs of the Fock space representations can be realized as the crystal consisting of proper Young walls. Finally, we give a generalized version of Lascoux-Leclerc-Thibon algorithm for computing the global bases of the basic representations of classical quantum affine algebras.

Keywords

References

  1. S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808 https://doi.org/10.1215/kjm/1250518452
  2. J. Brundan and A. Kleshchev, Hecke-Clifford superalgebras, crystals of type $A^{(2)}_{2l}$ and modular branching rules for $S_n$, Represent. Theory 5 (2001), 317-403 https://doi.org/10.1090/S1088-4165-01-00123-6
  3. I. Grojnowski, Affine $sl_{p}$ controls the modular representation theory of the symmetric group and related Hecke algebras, preprint (1999)
  4. J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002
  5. G. James and A. Kerber, The Representation Theory of the Symmetric Group, With a foreword by P. M. Cohn. With and introduction by Gilbert de B. Robinson. Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Publishing Co., Reading, Mass., 1981
  6. V. Kac, Infinite-Dimensional Lie Algebras, Third edition. Cambridge University Press, Cambridge, 1990
  7. S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, Proc. London Math. Soc. (3) 86 (2003), no. 1, 29-69 https://doi.org/10.1112/S0024611502013734
  8. S.-J. Kang and J.-H. Kwon, Quantum affine algebras, combinatorics of Young walls, and global bases, Electron. Res. Announc. Amer. Math. Soc. 8 (2002), 35-46 https://doi.org/10.1090/S1079-6762-02-00103-8
  9. M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249-260 https://doi.org/10.1007/BF02097367
  10. M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516 https://doi.org/10.1215/S0012-7094-91-06321-0
  11. M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839-858 https://doi.org/10.1215/S0012-7094-93-07131-1
  12. M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383-413 https://doi.org/10.1215/S0012-7094-94-07317-1
  13. M. Kashiwara, T. Miwa, J.-U. H. Petersen, and C. M. Yung, Perfect crystals and q-deformed Fock spaces, Selecta Math. (N.S.) 2 (1996), no. 3, 415-499 https://doi.org/10.1007/BF01587950
  14. A. Lascoux, B. Leclerc, and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205-263 https://doi.org/10.1007/BF02101678
  15. B. Leclerc and J.-Y. Thibon, q-deformed Fock spaces and modular representations of spin symmetric groups, J. Phys. A 30 (1997), no. 17, 6163-6176 https://doi.org/10.1088/0305-4470/30/17/023
  16. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498 https://doi.org/10.2307/1990961
  17. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New York, 1995
  18. A. Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, University Lecture Series, 15. American Mathematical Society, Providence, RI, 1999
  19. K. Misra and T. Miwa, Crystal base for the basic representation of $U_{q}$(sl(n)) Comm. Math. Phys. 134 (1990), no. 1, 79-88 https://doi.org/10.1007/BF02102090

Cited by

  1. Representation type of finite quiver Hecke algebras of type vol.397, 2014, https://doi.org/10.1016/j.jalgebra.2013.09.005
  2. Crystal bases for quantum affine algebras and Young walls vol.322, pp.6, 2009, https://doi.org/10.1016/j.jalgebra.2009.06.010
  3. Young walls and graded dimension formulas for finite quiver Hecke algebras of type $$A^{(2)}_{2\ell }$$ A 2 ℓ ( 2 ) and $$D^{(2)}_{\ell +1}$$ D ℓ + 1 ( 2 ) vol.40, pp.4, 2014, https://doi.org/10.1007/s10801-014-0519-4
  4. The Andrews–Olsson identity and Bessenrodt insertion algorithm on Young walls vol.43, 2015, https://doi.org/10.1016/j.ejc.2014.07.001