References
- S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808 https://doi.org/10.1215/kjm/1250518452
-
J. Brundan and A. Kleshchev, Hecke-Clifford superalgebras, crystals of type
$A^{(2)}_{2l}$ and modular branching rules for$S_n$ , Represent. Theory 5 (2001), 317-403 https://doi.org/10.1090/S1088-4165-01-00123-6 -
I. Grojnowski, Affine
$sl_{p}$ controls the modular representation theory of the symmetric group and related Hecke algebras, preprint (1999) - J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002
- G. James and A. Kerber, The Representation Theory of the Symmetric Group, With a foreword by P. M. Cohn. With and introduction by Gilbert de B. Robinson. Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Publishing Co., Reading, Mass., 1981
- V. Kac, Infinite-Dimensional Lie Algebras, Third edition. Cambridge University Press, Cambridge, 1990
- S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, Proc. London Math. Soc. (3) 86 (2003), no. 1, 29-69 https://doi.org/10.1112/S0024611502013734
- S.-J. Kang and J.-H. Kwon, Quantum affine algebras, combinatorics of Young walls, and global bases, Electron. Res. Announc. Amer. Math. Soc. 8 (2002), 35-46 https://doi.org/10.1090/S1079-6762-02-00103-8
- M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249-260 https://doi.org/10.1007/BF02097367
- M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516 https://doi.org/10.1215/S0012-7094-91-06321-0
- M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839-858 https://doi.org/10.1215/S0012-7094-93-07131-1
- M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383-413 https://doi.org/10.1215/S0012-7094-94-07317-1
- M. Kashiwara, T. Miwa, J.-U. H. Petersen, and C. M. Yung, Perfect crystals and q-deformed Fock spaces, Selecta Math. (N.S.) 2 (1996), no. 3, 415-499 https://doi.org/10.1007/BF01587950
- A. Lascoux, B. Leclerc, and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205-263 https://doi.org/10.1007/BF02101678
- B. Leclerc and J.-Y. Thibon, q-deformed Fock spaces and modular representations of spin symmetric groups, J. Phys. A 30 (1997), no. 17, 6163-6176 https://doi.org/10.1088/0305-4470/30/17/023
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498 https://doi.org/10.2307/1990961
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New York, 1995
- A. Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, University Lecture Series, 15. American Mathematical Society, Providence, RI, 1999
-
K. Misra and T. Miwa, Crystal base for the basic representation of
$U_{q}$ (sl(n)) Comm. Math. Phys. 134 (1990), no. 1, 79-88 https://doi.org/10.1007/BF02102090
Cited by
- Representation type of finite quiver Hecke algebras of type vol.397, 2014, https://doi.org/10.1016/j.jalgebra.2013.09.005
- Crystal bases for quantum affine algebras and Young walls vol.322, pp.6, 2009, https://doi.org/10.1016/j.jalgebra.2009.06.010
- Young walls and graded dimension formulas for finite quiver Hecke algebras of type $$A^{(2)}_{2\ell }$$ A 2 ℓ ( 2 ) and $$D^{(2)}_{\ell +1}$$ D ℓ + 1 ( 2 ) vol.40, pp.4, 2014, https://doi.org/10.1007/s10801-014-0519-4
- The Andrews–Olsson identity and Bessenrodt insertion algorithm on Young walls vol.43, 2015, https://doi.org/10.1016/j.ejc.2014.07.001