사육수온에 따른 흰다리새우 Litopenaeus vannamei 소화기관의 trypsin 활성과 배설률

Trypsin Activity in the Digestive Organs and Gastric Evacuation Rate of Litopenaeus vannamei at the Different Rearing Water Temperatures

  • 김수경 (국립수산과학원 동해수산연구소) ;
  • 김봉래 (국립수산과학원 서해특성화연구센터) ;
  • 김대현 (국립수산과학원 남해수산연구소) ;
  • 김종식 (국립수산과학원 서해특성화연구센터) ;
  • 장인권 (국립수산과학원 서해특성화연구센터)
  • 발행 : 2008.08.25

초록

흰다리새우 Litopenaeus vannamei 적정 사육기법을 개발하고자 사육수온(20, 23과 $26^{\circ}C$)에 따른 간췌장, 전장과 중장에서의 trypsin 활성 및 먹이섭취량을 조사하였다. $26^{\circ}C$에서의 흰다리새우 간췌장내의 효소활성은 $23^{\circ}C$ 구간보다 2배, $20^{\circ}C$ 구간보다 3배의 활성을 보였다. 전장에서의 효소활성은 사육수온에 관계없이 300 nmol/mg/min 과 340 nmol/mg/min로 유사한 최대 활성을 보였으나 먹이섭취 후 최대 활성이 나타나는 시간은 수온이 높을수록 짧아지는 것으로 나타났다. 중장에서의 효소활성은 먹이섭취량과 관계없이 $26^{\circ}C$ 구간에서 가장 높게 기록되어 수온이 높을수록 중장에서의 효소활성 또한 높아지는 것으로 나타났다. 체중에 대한 전장과 중장의 무게 비율의 변화, 즉 섭취된 먹이량에 의한 비율변화를 조사한 결과 전장에서의 최대 먹이섭취는 $23^{\circ}C$ 구간으로 체중의 0.6%를 섭취하였으며, $26^{\circ}C$는 0.5% 그리고 $20^{\circ}C$에서는 0.4%의 먹이를 섭취한 것으로 나타났다. 본 연구에서 최대먹이섭취는 $23^{\circ}C$에서 일어났지만 수온이 높은 구간인 $26^{\circ}C$에서 효소의 활성은 가장 높았고 배설률 또한 높아서 먹이의 잔류시간이 가장 짧은 것으로 나타났다. $20^{\circ}C$ 구간에서는 가장 적은 양의 먹이를 섭취하였고 효소활성 또한 가장 낮았으나 소화관내 먹이 잔류율이 실험기간 동안 가장 높은 것으로 나타났다. 각 수온에서 먹이섭취량에 따른 소화효소의 활성변화와 배설률에 따른 먹이 잔류시간을 고려하여 먹이공급량과 시간을 조절한다면 최적의 성장을 유도할 수 있는 방법으로 제시될 수 있다는 가능성을 확인하였다.

Tryptic enzyme activities in the digestive glands (hepatopancreas) and digestive tracts of Pacific white shrimps Litopenaeus vannamei were assayed at three water temperature regimes. At $26^{\circ}C$, trypsin activity in the hepatopancreas was 200% higher than at $23^{\circ}C$ and 300% higher than at $20^{\circ}C$. The highest foregut trypsin activity levels showed no significant difference in the temperature regimes, but the time between peaks in foreguts and midguts shortened at higher temperature. In the midgut, the level of enzyme activity was highest at $26^{\circ}C$ regardless of the amount of ingested feed. The ratio of foregut and/or midgut dry weight to the body wet weight indicated feed movement through the digestive track directly and gave accurate account about the feeding mechanism. Maximum feed ingestion in the foregut was equivalent to 0.6% of the body weight (wet weight) at $23^{\circ}C$, 0.4% of the body weight at $20^{\circ}C$, and 0.5% of the body weight at $26^{\circ}C$. In view of the temperatures chosen for this study, although maximum ingestion was observed at $23^{\circ}C$, the shrimps showed highest enzyme activity, but lowest feed retention time at $26^{\circ}C$ and lowest enzyme activity, but highest retention time at $20^{\circ}C$.

키워드

참고문헌

  1. 통계청 어업생산자료, 2007. 통계청. http://fs.fips.go.kr/
  2. Bayer, R.C., M.L Gallagher, D.F. Leavitt and J.H. Rittenburg, 1979. A radiographic study of the lobster (Homarus americanus) alimentary canal. Proc. World Maricult. Soc., 10, 561-564
  3. Boelhert, G.W. and M.M. Yoklavich, 1984. Carbon assimilation as a function of ingestion rate in larval pacific herring, Clupea harengus pallsi Valenciennes. J. Exp. Mar. Biol. Ecol., 79, 251-262 https://doi.org/10.1016/0022-0981(84)90199-0
  4. Cuzon, G., C. Rosas, G. Gaxiola, G. Taboada and A. Van Wormhoudt, 2000. Utilization of carbohydrates by shrimp. (in) L.E. Cruz-Surez, D. Ricque-Marie, M. Taia-Salaza, M.A. Olevera-Novoa, R. Civera-Cerecedo (eds.), V Simposium Internacional de Nutricion Acuicola, pp. 328-339
  5. Dall, W., P. Hill, C. Rothlisberg and D. Sharples, 1990. The biology of the penaeidae. (in) J. Blaxter and A. Southward (eds.), Advances in Marine Biology. Vol. 27. Academic Press, London, 489 pp
  6. Ellis, S.G. and L.F. Small, 1989. Comparison of gut-evacuation rates of feeding and non-feeding Calanus marshallae. Mar. Biol., 103, 175-181 https://doi.org/10.1007/BF00543345
  7. Galgani, M.L., Y. Benyamin and H.J. Ceccaldi, 1984. Identification of digestive proteinases of Penaeus kerathurus (Forskal): a comparison with Penaeus japonicus. Comp. Biochem. Physiol., 78B, 355-361
  8. Hill, B.J. and T.J. Wassenberg, 1992. Preferences and amount of food eaten by the prawn Penaeus esculentus over the moult cycle. Aust. J. Mar. Freshw. Res., 43, 727-735 https://doi.org/10.1071/MF9920727
  9. Holthuis, L.B., 1980. FAO Species Catalogue, Vol. 1, Shrimps and Prawns of the World. Food and Agriculture Organization of the United Nations
  10. Houde, E.D., 1989. Comparative growth, mortality and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish. Bull. U.S., 87, 471-495
  11. Le Vay, L., D.A. Jones, A.C. Puello-Cruz, R.S. Sangha and C. Ngamphongsai, 2001. Digestion in relation to feeding strategies exhibited by crustacean larvae. Comp. Biochem. Physiol., 128A, 623-630
  12. Moore, J.W., 1977. Some aspects of the feeding biology of benthic invertebrates. Hydrobiologica, 53, 139-146 https://doi.org/10.1007/BF00029292
  13. Muhlia-Almazan A. and F.L. Garca-Carreco, 2002. Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comp. Biochem. Physiol., 133B, 383-394
  14. Marchant, R. and H.B.N. Hynes, 1981. Field estimates of feeding rate for Gammarus pseudolimneus (Crustacea: Amphipoda) in the Credit River, Ontario. Freshwat. Biol., 11, 27-3 https://doi.org/10.1111/j.1365-2427.1981.tb01240.x
  15. Murtaugh, P.A., 1984. Variable gut residence time: problems inferring feeding rate from stomach fullness of a mysid crustacean. Can. J. Fish. Aquat. Sci., 41, 1287-1293 https://doi.org/10.1139/f84-157
  16. Nunes, A.J.P. and G.J. Parsons, 2000. Size-related feeding and gastric evacuation measurements for the Southern brown shrimp Penaeus subtilis. Aquaculture, 187, 133-151 https://doi.org/10.1016/S0044-8486(99)00386-5
  17. Ocampo, L. and J.M. Ezquerra, 2002. Digestive protease activity in juvenile Farfantepenaeus californiensis as a function of dissolved oxygen and temperature. Aquacult. Res., 33, 1073-1080 https://doi.org/10.1046/j.1365-2109.2002.00780.x
  18. Tsai, I.H., K.L. Chuang and J.L. Chuan, 1986. Chymotrypsins in digestive tracts of crustaceans decapods (shrimps). Comp. Biochem. Physiol., 85, 235-240 https://doi.org/10.1016/0305-0491(86)90248-8
  19. Vargas-Albores, F., P.H. Baltazar, G.P. Clark and F.M. Barajas, 1998. Influence of temperature and salinity on the yellowleg shrimp, Penaeus californiensis Holmes, prophenoloxidase system. Aquacult. Res., 29, 549-553 https://doi.org/10.1111/j.1365-2109.1998.tb01166.x
  20. Wasielesky Jr., W., A,C. Bianchini, C. Sanchez and L.H. Poersch, 2003. The effect of temperature, salinity and nitrogen products on food consumption of pink shrimp Farfantepenaeus paulensis. Braz. Arch. Biol. Technol., 46(1), 135-141 https://doi.org/10.1590/S1516-89132003000100019
  21. Welton, J.S., M. Ladle, J.A.B. Bass and I.R. John, 1983. Estimation of gut throughput time in Gammarus pules under laboratory and field conditions with a note on the feeding of young in the brood pouch. Oikos, 41, 133-138 https://doi.org/10.2307/3544355
  22. Wilcox, J.R. and H.P. Jeffries, 1974. Feeding habits of the sand shrimp Crangon septemspinos. Biol. Bull., 146, 424-43 https://doi.org/10.2307/1540416
  23. Wyban, J.A., J. Ogle, G.D. Pruder, L.W. Rowland and P.S. Leung, 1987. Design, operation and comparative financial analysis of shrimp farms in Hawaii and Texas. Tech. Report 86-6. The Oceanic Institute, Honolulu, Hawaii, USA
  24. Wyban J., W. Walsh and D.M. Godin, 1995. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture, 138, 267-279 https://doi.org/10.1016/0044-8486(95)00032-1