Fermented Kochujang Supplement Shows Anti-obesity Effects by Controlling Lipid Metabolism in C57BL/6J Mice Fed High Fat Diet

  • Koo, Bon-Sun (Research Institute Center of Bioactive Material, Chonbuk National University) ;
  • Seong, So-Hui (Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University) ;
  • Kown, Dae-Young (Food Functional Research, Division Korean Food Research Institutes) ;
  • Sohn, Hee-Sook (Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University) ;
  • Cha, Youn-Soo (Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University)
  • 발행 : 2008.04.30

초록

The aim of the present study was to assess the anti-obesity effects of fermented kochujang supplement in C57BL/6J mice. Thirty mice were divided into 3 groups; normal diet control group (ND), high fat diet control group (HD), and high fat diet plus kochujang supplemented group (HDK). Results were as follows: 1. Fennented kochujang supplement in high fat diet decreased body weight and epidydimal and back fat weight compared to non-supplement in HD group. 2. Lipid content and blood glucose level were lower in HDK group than HD group. 3. Fermented kochujang supplement increased mRNA level of lipolytic genes such as acyl-CoA synthetase (ACS), carnitine palmitoyltransferase-1 (CPT-1), and uncoupling proteins-1 (UCP-1) expression, whereas decreased mRNA level of adipogenic genes such as acetyl CoA carboxylase (ACC) expression. These findings suggest that fermented kochujang supplement in high fat diet normalized body weight, epididymal and back fat weight, lipid content, and blood glucose levels through controlling lipid metabolism and provides basic information on the control of obesity.

키워드

참고문헌

  1. Oh JY, Kim YS, Shin DH. Changes in microorganisms, enzyme activities, and gas formation by the addition of mustard power on kochujang with different salt concentration. Food Sci. Biotechnol. 15: 298-302 (2006)
  2. Kim YS, Kwon DJ, Koo MS, Oh HI, Kang TS. Changes in microflora and enzyme activities of traditional kochujang during fermentation. Food Sci. Biotechnol. 25: 502-509 (1993)
  3. Park KY, Kong KR, Jung KO, Rhee SH. Inhibitory effects of kochujang extracts on the tumor formation. J. Food Sci. Nutr. 6: 187-191 (2001)
  4. Choo JJ. Anti-obesity effects of kochujang in rats fed on a high fed diet. Korean J. Nutr. 33: 787-793 (2000)
  5. Kim SJ, Jung KO, Park KY. Inhibitory effect of kochujang extracts on chemically induced mutagenesis. J. Food Sci. Nutr. 4: 38-42 (1999)
  6. Wang J, Armour T, Geiss LS, Engelgau MM. Obesity and diabetes: Dual epidemics on the rise. Curr. Opin. Endocrinol. Diabetes 12: 174-180 (2005) https://doi.org/10.1097/01.med.0000157075.71572.c3
  7. Engelgau MM, Frank Vinicor, Simionescu M, King GL, Meininger C, Mensah GA. Summary statement IV: Obesity and diabetes: Opportunities for translation of basic research. Vascul. Pharmacol. 46: 324-326 (2007) https://doi.org/10.1016/j.vph.2006.10.015
  8. Tsuzuki T, Kawakami Y, Nakagawa K, Miyazawa T. Conjugated docosahexaenoic acid inhibits lipid accumulation in rats. J. Nutr. Biochem. 17: 518-524 (2006) https://doi.org/10.1016/j.jnutbio.2005.09.006
  9. Weissman C. Nutrition in the intensive care unit. Crit. Care 3: R67-R75 (1999) https://doi.org/10.1186/cc360
  10. Herdt TH. Ruminat adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet. Clin. N. Am.-Food A. 16: 215-230 (2000) https://doi.org/10.1016/S0749-0720(15)30102-X
  11. Mandard S, Muller M, Kersten S. PPAR a target genes. Cell. Mol. Life Sci. 61: 393-416 (2004) https://doi.org/10.1007/s00018-003-3216-3
  12. Choi HJ, Eo HK, Park KC, Jin MR, Park EJ, Kim SH, Park JE, Kim SY. A water-soluble extract form Cucurbita moschata shows anti-obesity effects by controlling lipid metabolism in a high fat diet-induced obesity mouse model. Biochem. Bioph. Res. Co. 359: 419-425 (2007) https://doi.org/10.1016/j.bbrc.2007.05.107
  13. Fujita H, Yoshikawa M. LKPNM: A prodrug type ACE-inhibitory derived from fish protein. Immunopharmacology 44: 123-127 (1999) https://doi.org/10.1016/S0162-3109(99)00118-6
  14. Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C. Cereal-based fermented food and beverages. Food Res. Intern. 36: 527-543 (2003)erpo https://doi.org/10.1016/S0963-9969(03)00009-7
  15. Folch J, Lees M, Sloane-Stanley GHS. Simple method of the isolation of total lipids from animal tissues. J. Biol. Chem. 22: 497-509 (1983)
  16. Rhee SH, Kong KR, Jung KO, Park KY. Decreasing effects kochujang on body weight and lipid levels of adipose tissues and serum in rats fed a high-fat diet. J. Food Sci. Nutr. 32: 882-886 (2003) https://doi.org/10.3746/jkfn.2003.32.6.882
  17. Kawada T, Hagihara K, Iwai K. Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J. Nutr. 116: 1272 (1986) https://doi.org/10.1093/jn/116.7.1272
  18. Watanabe T, Kawada T, Kato T, Harada T, Iwai K. Effects of capsaicin analogs on adrenal catecholamine secreation in rats. Life Sci. 54: 369-374 (1994) https://doi.org/10.1016/0024-3205(94)00793-4
  19. Nazz A, Yellayi S, Zakroczymski M, Bunick D, Doerge DR, Lubahn DB, Helferich WG, Cooke PS. The soy isoflavone genistein decrease adipose deposition in mice. Endocrinology 144: 3315-3320 (2003) https://doi.org/10.1210/en.2003-0076
  20. Fukutake M, Takahashi M, Ishida K, Kawamura H, Sugimura T, Wakabayashi K. Quantification of genistein and genistin in soybeans and soybean products. Food Chem. Toxicol. 34: 457-461 (1996) https://doi.org/10.1016/0278-6915(96)87355-8
  21. Kuriyama H, Shimomura I, Kishia K, Kondo H, Furuyama N, Nishizawa H, Maeda N, Matsuda M, Nagaretani H, Kihara S, Akamura T, Tochino Y, Fundhashi T, Matsuzawa Y. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 51: 2915-2921 (2002) https://doi.org/10.2337/diabetes.51.10.2915
  22. Fasshauer M, Pasche R. Regulation of adipocytokines and insulin resistance. Diabetologia 46: 1594-1603 (2003) https://doi.org/10.1007/s00125-003-1228-z
  23. Jing Y, Waxman S. Structural requirements for differentiationinduction and growth-inhibition of mouse erythro-leukemia cells by isoflavones. Anticancer Res. 15: 1147-1152 (1995)
  24. Sites CK, Cooper BC, Toth MJ, Gastaldelli A, Arabshahi A, Barnes S. Effect of a daily supplement of soy protein on body composition and insulin secretion in postmenopausal women. Fertil. Steril. 88: 1609-1617 (2007) https://doi.org/10.1016/j.fertnstert.2007.01.061
  25. Heim M, Frank O, Kampmann G, Sochodky N, Pennimpded T, Fuchs P, Hunziker W, Weber P, Martin I, Bendik I. The phytoestrogen genistein enhances osteogenesis and suppresses adipogenic differentiation of human primary bone marrow cells. Endocrinology 145: 848-859 (2004) https://doi.org/10.1210/en.2003-1014
  26. Chio BG, Vilahur G, Viles-Gonzalez JF, Badimon JJ. The role of high-density lipoprotein cholesterol in atherothrombosis. Mt. Sinai J. Med. 73: 690-701 (2006)
  27. Saad MF, Grec S, Osei K, Lewin AJ, Edwards C, Nunez M, Reinhardt RR. Ragaglitazone improves glycemic control and lipid profile in type 2 diabetic subjects: A 12-weeks, double-blind, placebo-controlled dose-ranging study with an open pioglitazone arm. Diabetes Care 27: 1324-1329 (2004) https://doi.org/10.2337/diacare.27.6.1324
  28. Barter PJ, Rye KA. High density lipoproteins and coronary heart disease. Atherosclerosis 121: 1-12 (1996) https://doi.org/10.1016/0021-9150(95)05675-0
  29. Bosello O, Cominacini L, Zocca I, Garbin U, Compri R, Davoli A, Brunetti L. Short- and long-term effects of hypocaloric diets containing proteins of different sources on plasma lipids and apoproteins of obeses subjects. Ann. Nutr. Metab. 32: 206-214 (1998) https://doi.org/10.1159/000177443
  30. Ascencio C, Torres N, Isoard-Acosta F, Gomez-Perez FJ, Hernandez-Pando R, Tavar AR. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J. Nutr. 134: 522-529 (2004)
  31. Tovar AR, Torre-Villalvazo I, Ochoa M, Elias AL, Ortiz V, Aguliar- Salinas CA, Torres N. Soy protein reduces hepatic lipotoxicity in hyperinsulinemic obese Zucker fa/fa rats. J. Lipid Res. 46: 1823- 1832 (2005) https://doi.org/10.1194/jlr.M500067-JLR200
  32. Jenkins AJ, Lyons T, Zheng DY, Otvos JD, Lackland DT, Mcgee D, Garvey WT, Klein RL. Serum lipoprotein in the diabetes control and complications trial/epidemiology of diabetes intervention and complications cohort-associations with gender and glycemia. Diabetes Care 26: 810-818 (2003) https://doi.org/10.2337/diacare.26.3.810
  33. Pushparaj P, Tan CH, Tan BKH. Effects of Averrhoa billimbi leaf extract on blood glucose and lipid in streptozotocin-diabetic rats. J. Ethnopharmacol. 72: 69-76 (2000) https://doi.org/10.1016/S0378-8741(00)00200-2
  34. Pushparaj PN, Tan BH, Tan CH. The mechanism of hypoglycemic action of the semi-purified fractions of Averrhoa billimbi in streptozotocin-diabetic rats. Life Sci. 70: 535-547 (2001) https://doi.org/10.1016/S0024-3205(01)01423-0
  35. Wagner JD, Cefalu WT, Anthony MS, Litwak KN, Zhang L, Clarkson TB. Dietary soy protein and estrogen replacement therapy improve cardiovascular risk factors and decrease aortic cholesteolester content in ovariectomized cynomologus monkeys. Metabolism 46: 698-705 (1997) https://doi.org/10.1016/S0026-0495(97)90016-0
  36. Iritani N, Sugimoto T, Fukuda H. Dietary soybean protein increases insulin receptor gene expression in male Wistar fatty rats when dietary polyunsaturated fatty acid level is low. J. Nutr. 127: 1077- 1083 (1997)
  37. Champe PC, Harvey RA, Ferrier DR. Lippincott's Illustrated Reviews: Biochemistry. 3rd ed. Lippincott Williams & Wilkins, New York, NY, USA. pp. 181-187 (2006)
  38. Achouri Y, Hegarty BD, Allanic D, Becard D, Hainault I, Ferre P, Foufelle F. Long chain fatty acyl-CoA synthetase expression is induced by insulin and glucose: Involvement of sterom.l regulatory element-binding protein-1c. Biochimie 87: 1149-1155 (2005) https://doi.org/10.1016/j.biochi.2005.04.015
  39. Ryu MH, Sohn HS, Heo YR, Naima M, Cha YS. Differential regulation of hepatic gene expression by starvation versus refeeding following a high-sucrose or high-fat diet. Nutrition 21: 543-552 (2005) https://doi.org/10.1016/j.nut.2005.01.001
  40. Mynatt RL, Lappi MD, Cook GA. Myocardial carnitine palmitoyltransferase of the mitochondrial outer membrane is not altered by fasting. Biochim. Biophys. Acta 1128: 105-111 (1992) https://doi.org/10.1016/0005-2760(92)90263-U
  41. Dyck JRB, Lopaschuk GD. Malonyl CoA control of fatty acid oxidation in the ischemic heart. J. Mol. Cell. Cardiol. 34: 1099-1109 (2002) https://doi.org/10.1006/jmcc.2002.2060
  42. Masashi M, Chiaki S, Katsum S. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats. Brit. J. Nutr. 96: 469-475 (2006)
  43. Boss O, Mussin P, Giacobino JP. The uncoupling proteins, a review. Eur. J. Endocrinol. 139: 1-9 (1998) https://doi.org/10.1530/eje.0.1390001
  44. Himms-Hagen J, Cui J, Danforth E, Taatjes DJ, Lang SS, Water BL, Claus TH. Effects of CL-316,243, thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am. J. Physiol. 266: R1371-R1379 (1994)
  45. Yoshida T. Umdkawa T, Kumamoto K, Sakane N, Kogure A, Kondo M, Wakabayashi Y, Kawada T, Nagase I, Saito M. P3- Adrenergic agonist induces a functionally active uncoupling protein in fat and low-twitch muscle fibers. Am. J. Physiol. 274: E469-E475 (1998)
  46. Choo JJ, Shin HJ. Body-fat suppressive effects of capsaicin through ${\beta}-adrenergic$ stimulation in rats fed a high fat diet. Korean J. Nutr. 32: 533-539 (1999)