DOI QR코드

DOI QR Code

SHARP ESTIMATES FOR MULTILINEAR COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR

  • Hao, Jinliang (DEPARTMENT OF MATHEMATICS CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY) ;
  • Liu, Lanzhe (DEPARTMENT OF MATHEMATICS CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY)
  • Published : 2008.01.31

Abstract

In this paper, we prove the sharp estimates for multilinear commutator related to Littlewood-Paley operator. By using the sharp estimates, we obtained the weighted $L^p$-norm inequality for the multilinear commutator for 1 < p < $\infty$.

Keywords

References

  1. J. Alvarez, R. J. Babgy, D. S. Kurtz, and C. Perez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), 195-209 https://doi.org/10.4064/sm-104-2-195-209
  2. R. Coifman and Y. Meyer, Wavelets, Calderon-Zygmund and Multilinear Operators, Cambridge Studies in Advanced Math. 48, Cambridge University Press, Cambridge, 1997
  3. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635 https://doi.org/10.2307/1970954
  4. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. 16, Amsterdam, 1985
  5. G. Hu and D. C. Yang, A variant sharp estimate for multilinear singular integral operators, Studia Math. 141 (2000), 25-42
  6. L. Z. Liu, Weighted weak type estimates for commutators of Littlewood-Paley operator, Japanese J. Math. 29 (2003), no. 1, 1-13 https://doi.org/10.4099/math1924.29.1
  7. L. Z. Liu, The continuity of commutators on Triebel-Lizorkin spaces, Integral Equations and Operator Theory 49 (2004), no. 1, 65-76 https://doi.org/10.1007/s00020-002-1186-8
  8. C. Perez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal. 128 (1995), 163-185 https://doi.org/10.1006/jfan.1995.1027
  9. C. Perez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J. 49 (2001), 23-37 https://doi.org/10.1307/mmj/1008719033
  10. C. Perez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. 65 (2002), 672-692 https://doi.org/10.1112/S0024610702003174
  11. E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993
  12. A. Torchinsky, The Real Variable Methods in Harmonic Analysis, Pure and Applied Math. 123, Academic Press, New York, 1986