파랑과 정상흐름의 공존역에서 해저관로 주변의 국부세굴

The Local Scour around Submarine Pipelines in the Interaction Region Combined with Waves and Currents

  • Kim, Kyoung-Ho (School of Civil Engineering, Chungbuk National Univ.) ;
  • Lee, Ho-Jin (Dept. of Civil Engineering, Gangwon Provincial coll) ;
  • Kim, Wan-Shik (Hong-ik Engineering & Consultants Co. LTD)
  • 발행 : 2008.10.31

초록

본 연구에서는 해저관로의 국부세굴 특성을 고찰하기 위하여 파랑과 정상흐름이 결합된 흐름장에서 실험을 수행하였다. 조파장치와 흐름 발생장치를 이용하여 파랑과 흐름의 방향이 일치하는 경우와 반대인 경우에 대해서 검토하였다. 관경, 주기, 파고, 흐름속도 등을 변화시켜 가면서 해저관로 주변의 국부 세굴심을 측정하였다. 실험결과 최대평형 세굴심은 관경, 주기, 파고, 흐름속도가 증가할수록 증가하였다. 실험결과를 통하여, Shields 수, Froude 수, KC 수, 주기매개변수, Ursell 수, 수정 Ursell 수 및 유속비 등의 매개변수가 세굴심에 미치는 영향을 분석하였다. Froude 수와 Shields 수가 국부세굴을 일으키는 주요매개변수로 나타났는데, 이것은 파랑과 흐름이 결합된 흐름장에서 어느 한도 내에서는 흐름이 세굴을 지배하는 것을 보여준다.

In the study, experiments are performed in the interaction region combined with wave and current to investigate the characteristics of local scour around submarine pipelines. Wave generator and current generator are used for the experiments and two current directions were used; co-direction and counter direction to the wave. The local scour depths around the pipeline are obtained according to the various pipe diameters(D), wave periods(T), wave heights(H), and current velocities(V). The experiments show that the maximum equilibrium local scour depth increases with pipe diameter, wave period, wave height, and current velocity. Using the experimental results, the correlations of scour depth and parameters such as Shields parameter($\theta$), Froude number(Fr), period parameter, Keulegan-Carpenter number(KC), Ursell number($U_R$), modified Ursell number($U_{RP}$) and ratio of velocities($U_{c}/(U_{c}+U_{m})$) are analyzed. In the interaction region combined with waves and currents, Froude number and Shields parameter are found the main parameters to cause the local scour around the submarine pipelines and this means that current governs the scour within any limits of the currents.

키워드

참고문헌

  1. 김경호, 김홍훈, 오현식, 연주흠(2005). 파랑에 의한 해저 매설관로 주변의 국부세굴 특성. 한국해안.해양공학회지, 17(2), 106-118
  2. 김경호, 오현식, 박재성, 이호진(2004). 해저 바닥에 놓인 관로하의 파에 의한 국부세굴특성. 대한토목학회 논문집, 24(3B), 247-257
  3. 황현구, 김경호, 연주흠, 오현식(2003). 경사해빈에 설치된 해저관로의 국부세굴. 한국해안.해양공학회지, 15(3), 176-185
  4. Bernetti, R., Bruschi, R., Valentini, V. and Venturi. (1990). Pipelines placed on erodible eabeds. Proc. 9th International Conference on Offshore Mechanics and Arctic Engineering, ASME, Houston, TX, vol.V-M, 155-164
  5. Bijker, E.W. and Leeuwestein, W. (1984). Interaction between pipelines and the seabed under the influence of waves and current. Seabed Mechanics, Proc. Symp. IUTAM/IUGG, Newcastle Upon Tyne, England, Dec., 235-242
  6. Breusers, H.N.C. and Raudkivi, A.J. (1991). Scouring. A.A. Balkema, Rotterdam, VIII+143p
  7. Chao, J.L. and Hennessy, P.V. (1972). Local scour under ocean outfall pipelines. Journal of Water Pollution control Fed. 44(7), 1443-1447
  8. Chiew, Y.M., et al. (1990). Mechanics of Local Scour around Submarine Pipelines. Journal of Hydraulic Engineering, ASCE, 116(4), 515-529 https://doi.org/10.1061/(ASCE)0733-9429(1990)116:4(515)
  9. Cevik, E. and Yuksel, Y. (1999). Scour under Submarine Pipelines in Waves in Shoaling Conditions. Journal of Waterway, Port Coastal and Ocean Engineering, 125(1), 1-11 https://doi.org/10.1061/(ASCE)0733-950X(1999)125:1(1)
  10. Grant, W.D. and Madsen, O.S. (1979). Combined Wave and Current Interaction with a Rough Bottom. J. Geophys. Res., 84, 1797-1808 https://doi.org/10.1029/JC084iC04p01797
  11. Hansen, E.A. (1992). Scour below pipelines and cables: A simple model. Proc. 11th Offshore Mechanics and Arctic Engineering Conference, ASME, Calgary, Canada, vol.V-A, Pipeline Technology, 133-138
  12. Herbich, J.B. (1981). Scour around Pipelines and Other Objects. Offshore Pipeline Design Elements, Marcel Dekker Inc., New York, 43-96
  13. Herbich, J.B., Schiller, R.E., Jr., Watanabe, R.K. and Dunlap, W.A. (1984). Seafloor Scour. Design Guidelines for Ocean-Founded Structures. Marcell Dekker, Inc., New York, NY, xiv+320p
  14. Ibrahim, A. and Nalluri, C. (1986). Scour prediction around marine pipelines. Proc. 5th Int. Symp. on Offshore Mech. and Arctic Engrg., ASME, New York, 3, 679-684
  15. Kjeldsen, S.P., Gjrsvik, O., Bringaker, K.G. and Jacobsen, J. (1973). Local scour near offshore pipelines. Proc. Second Int. Port and Ocean Engineering under Arctic conditions Conf., 308-331
  16. Klomp, W.H.G., Hansen, E.A., Chen, Z., Bijker, R. and Bryndum, M.B. (1995). Pipeline Seabed Interaction, Free Span Development. Proceedings of 5th International Offshore and Polar Engineering Conference, 1(3), 117-122
  17. Liang Bing-Chen, Li Hua -Jun, and Lee Dong-Yong (2007). Bottom Shear Stress under Wave-Current Interaction. Journal of Hydrodynamics., 20(1), 88-95
  18. Littlejohn, P.S.G.(1977). A study of scour around submarine pipelines. Rep. No. Int 113, Hydraulic Research Station, Wallingford, U.K
  19. Lucassen, R.J. (1984). Scour underneath submarine pipelines. Report No. PL- 42A, Netherlands Marine Tech. Res., Netherlands Industrial Council for Oceanology, Delft University of Technolty, Delft, the Netherlands, Sep., Student Thesis supervised by E. W. Bijker and W. Leeuwenstein
  20. Melville, B.W. and Coleman, S.E. (2000). Bridge Scour. Water Resources Publications, LLC, CO, USA, XXII+550p
  21. Mostafa, A.F., Jo, Y.H.C. and Adrian, W.K.L. (1990). Wave- Induced Breakout of Half-Buried Marine Pipes. Journal of Waterway, port Coastal and Ocean Engineering, ASCE, 116(2), 267-286 https://doi.org/10.1061/(ASCE)0733-950X(1990)116:2(267)
  22. Signell, R.P., Beardsley, R.C. and Graver, H.C. (1990). Effect of Wave-Current Interaction on Wind-Driven Circulation in Narrow, Shallow Embayments. J. Geophys. Res., 95, 9671-9678 https://doi.org/10.1029/JC095iC06p09671
  23. Sumer, B.M., Truelsen, C., Shchmann, T. and Fredsoe, J. (2001). Onset of Scour below Pipelines and Self-burial. Coastal Engineering, 42, 313-335 https://doi.org/10.1016/S0378-3839(00)00066-1
  24. Sumer, B.M. and Fredsoe, J. (2001). Scour Around Pile In Combined Waves and Currents. Journal of Hydraulic Engineering, 403-411
  25. Sumer, B.M. and Fredsoe, J. (1996). Scour around pipelines in combined waves and current. Proc. 7th International Conference on Offshore Mechanics and Arctic Engineering Conference, ASME, Florence, Italy, vol. V, Popeline Technology, 595-602
  26. Sumer, B.M. and Fredsoe, J. (1990). Scour Below Pipelines in Waves. Journal of waterway, port Coastal and Ocean Engineering, ASCE, 116(3), 307-323 https://doi.org/10.1061/(ASCE)0733-950X(1990)116:3(307)
  27. Yuksel, Y., Ath, V. and Cevik, E. (1995). Flow Field along a Flat Surface with a Parallel Placed Cylinder. Proceedings of 5th International Offshore and Polar Engineering Conference, 157-170
  28. Yuksel, Y. and Narayanan, R. (1994). Wave Forces on Horizontal Cylinder Resting on Sloping Bottom. Proceedings of 4th International Offshore and Polar Engineering Conference, 2, 85-92
  29. Yuksel, Y. and Narayanan, R. (1993). Breaking Wave Forces on Horizontal Cylinders Close to the Sea Bed. Coastal Engineering, 23, 115-133 https://doi.org/10.1016/0378-3839(94)90018-3
  30. Whitehouse, R. (1998). Scour at Marine Structures. Thomas Telford, xix+198