산란체법에 의한 다중 계단지형에서의 파랑변형 계산

Computation of Wave Transformation over a Multi-Step Topography by a Scatterer Method

  • 서승남 (한국해양연구원 연안개발.에너지연구부)
  • Seo, Seung-Nam (Coastal Engineering & Ocean Energy Research Department, KORDI)
  • 발행 : 2008.10.31

초록

단일 계단지형에 대한 반사파와 투과파의 해를 이용하여 다중 계단지형에서의 파랑변형을 계산할 수 있는 새로운 산란체법의 모형을 구성하였다. 산란체법의 근사해를 보다 정밀한 Kirby and Dalrymple(1983)이 제시한 EFEM의 해와 비교검증하였다. 진행파만의 근사에서는 산란체법과 EFEM의 해는 동일하다. 계산된 반사율과 투과율에 대한 위상의 경우 억류파를 포함한 산란체법의 해는 진행파만의 근사해보다 훨씬 우수하다. 억류파의 영향이 감소할수록 산란체법의 해는 EFEM의 해로 접근한다.

Based on reflected and transmitted waves by a single step bottom, a new model of scatterer method is constructed which can be used to calculate wave transformation over a multi-step topography. The approximate results are tested by comparison with the more accurate results obtained from EFEM presented by Kirby and Dalrymple(1983). In the case of plane-wave approximation, solutions of the scatterer method and the EFEM are the same. Results obtained by the scatterer method with non-propagating modes are much better, in terms of phase for the calculated reflection and transmission coefficients, than those by plane-wave approximation. As the effect of non-propagating modes decreases, solutions of the scatterer method become closer to those of the EFEM.

키워드

참고문헌

  1. 서승남, 김상익 (1992). 해저단애 재형 및 흐름에 의한 억류파랑. 한국해안해양공학회지, 4(1), 1-9
  2. 이창훈, 조용식 (2002). 선형파 이론을 사용하여 파랑변형 예측시 소멸파 성분의 중요성 검토: 1. 에너지식 유도. 한국해안해양공학회지, 14(4), 282-285
  3. 조용식, 이창훈 (1998). 수심이 변하는 지형을 통과하는 파랑의 반사율과 통과율 산정. 대한토목학회논문집, 18(II-.4), 351-358
  4. Bender, C.J. and Dean, R.G. (2003). Wave transformation by two-dimensional bathymetric anomalies with sloped transitions. Coastal Eng., 50, 61-84 https://doi.org/10.1016/j.coastaleng.2003.08.002
  5. Dean, R.G. and Dalrymple, R.A. (1984). Water wave mechanics for engineers and scientists. Prentice-Hall, Englewood Cliffs, New Jersey
  6. Devillard, P., Dunlop, F. and Souillard B. (1988). Localization of gravity waves on a channel with a random bottom. J. Fluid Mech., 186, 521-538 https://doi.org/10.1017/S0022112088000254
  7. Harberman, R. (2004). Applied partial differential equations with Fourier series and boundary value problems, 4th ed. Pearson Prentice Hall, Upper Saddle River, New Jersey
  8. Kirby, J.T. and Dalrymple, R.A. (1983). Propagation of obliquely incident water waves over a trench. J. Fluid Mech., 133, 47-63 https://doi.org/10.1017/S0022112083001780
  9. Kirby, J.T., Dalrymple, R.A. and Seo, S.N. (1987). Propagation of obliquely incident water waves over a trench. Part 2. Currents flowing along the trench. J. Fluid Mech., 176, 95-116 https://doi.org/10.1017/S0022112087000582
  10. Lamb, H. (1932). Hydrodynamics. Dover, New York
  11. Lee, J.-J. and Ayer, R.M. (1981). Wave propagation over a rectangular trench. J. Fluid Mech., 110, 335-347 https://doi.org/10.1017/S0022112081000773
  12. Mei, C.C. (1989). The Applied Dynamics of Ocean Surface Waves. World Scientific, Singapore
  13. Miles, J.W. (1967). Surface-wave scattering matrix for a shelf. J. Fluid Mech., 28, 755-767 https://doi.org/10.1017/S0022112067002423
  14. Miles, J.W. (1982). On surface-wave diffraction by a trench. J. Fluid Mech., 115, 315-325 https://doi.org/10.1017/S0022112082000779
  15. Newman, J.N. (1965). Propagation of water waves over an infinite step. J. Fluid Mech., 23, 399-415 https://doi.org/10.1017/S0022112065001453
  16. O'Hare, T.J. and Davies, A.G (1992). A new model for surface-wave propagation over undulating topography. Coastal Eng., 18, 251-266 https://doi.org/10.1016/0378-3839(92)90022-M
  17. Takano, K. (1960). Effets d'n obstacle parallelpipedique sur la propagation de la houle. La Houille Blanche, 15, 247-267