DOI QR코드

DOI QR Code

저분자량 유화제 첨가에 의한 계면 흡착 메칠셀룰로오스의 경쟁이탈 특성 연구

Competitive Displacement of Methylcellulose from Oil-Water Interface by Various Emulsifiers

  • 홍순택 (호원대학교 식품외식조리학부)
  • 발행 : 2008.10.31

초록

본 연구는 MC를 함유하는 유화식품 제조에 필요한 기초 자료를 얻고자 물/기름 계면에서 저분자량 유화제와 계면 흡착 MC와의 경쟁이탈(혹은 흡착) 현상을 구명하고자 수행 하였다. 경쟁이탈 특성 변화는 계면막 조성 분석, 표면 전단 점도 측정 혹은 표면 장력을 측정하여 분석하였다. MC 유화액(1 wt% MC, 10 wt% n-tetradecane, 20 mM bis-tris, pH7)에 수용성 Tween 20을 첨가할 경우 첨가 농도의 증가에 따라 MC 흡착량이 감소하여 0.1 wt% 첨가 농도에서 모든 계면에 흡착된 MC가 수용액으로 이탈되었으며, 표면 전단 점도를 측정 결과도 이와 잘 일치하였다. 지용성 Span 80을 첨가할 경우 낮은 농도에서($\leq$0.05 wt%) 유화제를 첨가하지 않은 경우와 비교하여 MC load가 약 10$\sim$25% 증가하였고 (상승작용), 농도의 증가와 더불어 흡착량은 감소하였으나 고농도(0.1 wt%)에서 MC 분자의 완전한 경쟁 이탈은 관찰되지 않았다. 또한, 표면 전단 점도 측정을 통하여 물/기름 계면에서 MC와 Span 80 간의 상승작용을 확인할 수 있었다. 수용성 SDS 첨가할 경우 경쟁 이탈 현상은 Tween 20의 경우와 비교하여 다소 다른 형태를 나타내었다. 즉 SDS 첨가 농도의 증가와 더불어 MC load는 점차로 감소하는 경향을 보였으나 Tween 20 첨가의 경우와 달리 높은 SDS농도(> 0.1 wt%)에서도 유화 지방구 표면에는 약간의 MC가 존재하고 있는 것으로 분석되었고, 이를 SDS와 MC 분자간의 경쟁 이탈 현상 혹은 복합체 형성을 시사하는 것으로 추정하였으며, air-water 표면 장력의 변화도 이와 잘 일치하고 있었다. 결론적으로 계면에 흡착된 MC는 저분자량 유화제에 의하여 수용액 상으로 경쟁이탈(competitive displacement) 되었으며, 그 형태는 유화제 종류에 따라 다르게 나타난 것으로 관찰되었다.

Competitive displacement of methylcellulose (MC) absorbed at the oil-water interface was investigated by interfacial composition, surface shear viscosity, or surface tension measurements. It was found that all emulsifiers could competitively displace the interfacial MC from the oil-water interface but their behaviors were different from each other. With Tween 20 added to MC emulsion (1 wt% MC, 10 wt% n-tetradecane, 20 mM bis-tris, pH 7), MC load was steadily decreased with increasing concentrations of the emulsifier, as confirmed by surface shear viscosity measurements; moreover, there was complete MC displacement from the emulsion droplet surface at high concentration (0.1 wt%). The oil-soluble Span 80 was found to show a synergism with MC at the interface, which resulted in higher MC load at relatively low emulsifier concentrations ($\leq$0.05 wt%). At a higher emulsifier concentration (0.1 wt%) limited MC displacement was observed. These results were well supported by surface shear viscosity measurements. With water-soluble SDS, MC load was decreased with increasing concentrations of the emulsifier. Unlike Tween 20, however, it was found that at high concentrations (> 0.1 wt%), there was still some MC remaining at the droplet surface. Surface tension measurements are suggestive of an interfacial complex between MC and SDS.

키워드

참고문헌

  1. Dickinson E. 1992. An Introduction to Food Colloids. Oxford University Press, Oxford. p 1-29
  2. Williams PA, Phillips GO. 2000. Introduction to food hydrocolloids. In Handbook of hydrocolloids. Williams PA, Phillips GO, eds. Woodhead Publishing Limited, Cambridge. p 1-20
  3. Zecher D, Gerrish T. 1997. Cellulose derivatives. In Thickening and Gelling Agents for Food. Imeson A, ed. Blackie Academic & Professional, London. p 60-87
  4. Hong ST. 2008. Influence of methylcellulose on properties of $\beta$-lactoglobulin emulsions. Food Engin Prog 12: 121-127
  5. Sarkar N. 1984. Structural interpretation of the interafacial properties of aqueous solutions of methylcellulose and hydroxypropyl methylcellulose. Polym 25: 481-486 https://doi.org/10.1016/0032-3861(84)90206-4
  6. Wollenweber C, Makievski AV, Miller R, Daniels R. 2001. Adsorption of hydroxypropyl methylcellulose at the liquid/liquid interface and the effect on emulsion stability. Colloid Surf A 172: 91-101 https://doi.org/10.1016/S0927-7757(00)00569-0
  7. Sarker DK, Axelos M, Popineau Y. 1999. Methylcelluloseinduced stability changes in protein-based emulsions. Colloids Surf B 12: 147-160 https://doi.org/10.1016/S0927-7765(98)00071-X
  8. Gullapalli RP, Sheth B. 1996. Effect of methylcellulose on the stability of oil-in-water emusions. Int J Pharm 140: 97-109 https://doi.org/10.1016/0378-5173(96)04591-7
  9. Hong ST. 1996. Influence of surfactants on properties of $\beta$-lactoglobulin emulsions and heat-treated emulsion gels. PhD Dissertation. University of Leeds, Leeds
  10. Dickinson E, Rolfe SE, Dalgleish DG. 1990. Surface shear viscosity as a probe of protein-protein interactions in mixed protein films adsorbed at the oil-water interface. Int J Biol Macromol 12: 189-194 https://doi.org/10.1016/0141-8130(90)90031-5
  11. Dickinson E, Murray BS, Stainsby G. 1985. Time-dependent surface viscosity of adsorbed films of casein+gelatin at the oil-water interface. J Colloid Interface Sci 106: 259-262 https://doi.org/10.1016/0021-9797(85)90406-0
  12. McClements DJ. 2004. Food Emulsions: principles, practices, and techniques. 2nd ed. CRC Press, Boca Raton, Florida. p 175-232, 461-514
  13. Kanzaki G, Berger EY. 1959. Colorimetric determination of methylcellulose with diphenylamine. Anal Chem 31: 1385-138531 https://doi.org/10.1021/ac60152a043
  14. Dickinson E, Mauffret A, Rolfe SE, Woskett CM. 1989. Adsorption at interfaces in dairy systems. J Soc Dairy Technol 42: 18-22 https://doi.org/10.1111/j.1471-0307.1989.tb01702.x
  15. Gramham DE, Phillips MC. 1979. Proteins at liquid interfaces. III. Molecular structures of adsorbed films. J Colloid Interface Sci 70: 427-439 https://doi.org/10.1016/0021-9797(79)90050-X
  16. Methocel Cellulose Ethers Technical Handbook. 1996. Dow Chemical Co. Form No. 192-01062-1296XGW
  17. Dickinson E, Woskett CM. 1989. Competitive adsorption between proteins and small-molecule surfactants in food emulsions. In Food Colloids. Bee RD, Richmond P, Mingins J, eds. Royal Society of Chemistry, Cambridge. p 74-96
  18. Darling DF, Birkett RJ. 1987. Food colloids in practice. In Food Emulsions and Foams. Dickinson E, ed. Royal Society of Chemistry, London. p 1-29
  19. Courthaudon JL, Dickinson E, Dalgleish DG. 1991. Competitive adsorption of $\beta$-casein and nonionic surfactants in oil-water emulsions. J Colloid Interface Sci 145: 390-395 https://doi.org/10.1016/0021-9797(91)90369-J
  20. Dickinson E, Owusu RK, Tan S, Williams A. 1993. Oil-soluble surfactants have little effect on competitive adsorption of $\alpha-lactalbumin and \beta$-lactogloulin in emulsions. J Food Sci 58: 295-298 https://doi.org/10.1111/j.1365-2621.1993.tb04259.x
  21. De Feijter JA, Benjamins J, Tamboer M. 1987. Adsorption displacement of proteins by surfactants in oil-in-water emulsions. Colloid Surf 27: 243-266 https://doi.org/10.1016/0166-6622(87)80340-2
  22. Dickinson E. 1991. Competitive adsorption and proteinsurfactant interactions in oil-in-water emulsion. ACS Symp Ser 448: 114-129 https://doi.org/10.1021/bk-1991-0448.ch009
  23. Arboley JC, Wilde PJ. 2005. Competitive adsorption of proteins with methylcellulose and hydroxypropyl methylcellulose. Food Hydrocoll 19: 485-491 https://doi.org/10.1016/j.foodhyd.2004.10.013
  24. Djuve J, Pugh RJ, Sjoblom J. 2001. Foaming and dynamic surface tension of aqueous polymer/surfactant solutions 1: ethyl(hydroxyethyl) cellulose and sodium dodecyl sulphate. Colloid Surf A 186: 189-202 https://doi.org/10.1016/S0927-7757(00)00787-1
  25. Nystrom B, Walderhaug H, Hansen FK. 1995. Rheological behavior during thermoreversible gelation of aqueous mixtures of ethyl(hydroxyethyl) cellulose and surfactants. Langmuir 11: 750-757 https://doi.org/10.1021/la00003a014

피인용 문헌

  1. Emulsifying Properties of Octenyl Succinic Anhydride Modified β-Glucan from Barley vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.217
  2. Stability and antioxidant effect of rapeseed extract in oil-in-water emulsion vol.43, pp.2, 2016, https://doi.org/10.7744/kjoas.20160028
  3. Changes in the Stability Properties of Methylcellulose Emulsions as Affected by Competitive Adsorption Between Methylcellulose and Tween 20 vol.37, pp.10, 2008, https://doi.org/10.3746/jkfn.2008.37.10.1278
  4. Stability of Oil-in-Water Emulsions with Different Saturation Degrees from Beef Tallow Alcoholysis Products vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.933
  5. 식품 유화액 시스템에서 락토페린의 유화 특성 vol.30, pp.4, 2013, https://doi.org/10.12925/jkocs.2013.30.4.779