References
- Allen, D.D., and Smith, Q.R. (2001) Characterization of the blood-brain barrier choline transporter using the in situ rat brain perfusion technique. J. Neurochem. 76, 1032-1041 https://doi.org/10.1046/j.1471-4159.2001.00093.x
- Blusztajn, J.K., and Wurtman, R.J. (1983) Choline and cholinergic neurons. Science 221, 614-620 https://doi.org/10.1126/science.6867732
- Cohen, B.M., Renshaw, P.F., Stoll, A.L., Wurtman, R.J., Yurgelun- Todd, D., and Babb, S.M. (1995) Decreased brain choline uptake in older adults: an in vivo proton magnetic resonance spectroscopy study. J. Am. Med. Assoc. 274, 902-907 https://doi.org/10.1001/jama.1995.03530110064037
- Cornford, E.M., Braun, L.D., and Oldendorf, W.H. (1978) Carrier mediated blood-brain barrier transport of choline and certain analogs. J. Neurochem. 30, 299-308 https://doi.org/10.1111/j.1471-4159.1978.tb06530.x
- Cornford, E.M. (1985) The blood-brain barrier, a dynamic regulatory interface. Mol. Physiol. 7, 219-259
- Dolezal, V., and Tucek, S. (1992) Investigation of the mechanism of the effect of tacrine (tetrahydroaminoacridine) on the metabolism of acetylcholine and choline in brain cortical prisms. J. Neural. Transm. Park. Dis. Dement. Sect. 4, 303-318 https://doi.org/10.1007/BF02260079
- Grason, S.I. (1996) Evaluation of tacrine hydrochloride (Cognex) in two parallel-group studies. Acta. Neurol. Scand. Suppl. 165, 114-122
- Hosoya, K.I., Takashima, T., Tetsuka, K., Nagura, T., Ohtsuki, S., Takanaga, H., Ueda, M., Yanai, N., Obinata, M., and Terasaki, T. (2000) mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines, a new in vitro BBB model for drug targeting. J. Drug Target. 8, 357-370 https://doi.org/10.3109/10611860008997912
- Kakee, A., Terasaki, T., and Sugiyama, Y. (1996) Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J. Pharmacol. Exp. Ther. 277, 1550-1559
- Kang, Y.S., Terasaki, T., Ohnishi, T., and Tsuji, A. (1990) In vivo and in vitro evidence for a common carrier mediated transport of choline and basic drugs through the blood-brain barrier. J. Pharmacobiodyn. 13, 353-360 https://doi.org/10.1248/bpb1978.13.353
- Kang, Y.S., Lee, K.E., Lee, N.Y., and Terasaki, T. (2005) Donepezil, tacrine and alpha-phenyl-n-tert-butyl nitrone (PBN) inhibit choline transport by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB). Arch. Pharm. Res. 28, 443-450 https://doi.org/10.1007/BF02977674
- Knapp, M.J., Knopman, D.S., Solomon, P.R., Pendlebury, W.W., Davis, C.S., and Gracon, S.I. (1994) A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer's disease. J. Am. Med. Assoc. 271, 985-991 https://doi.org/10.1001/jama.1994.03510370037029
- Knecht, K.T., and Mason, R.P. (1993) In vivo spin trapping of xenobiotic free radical metabolites. Arch. Biochem. Biophys. 303, 185-194 https://doi.org/10.1006/abbi.1993.1272
- Lee, N.Y., and Kang, Y.S. (2006) In vivo brain-to-blood efflux transport of choline at the blood-brain barrier. J. Appl. Pharmacol. 14, 45-49
- MaNally, W.P., Pool, W.F., Sinz, M.W., Dehart, P., Ortwine, D.F., Huang, C.C., Chang, T., and Woolf, T.F. (1996) Distribution of tacrine and metabolites in rat brain and plasma after single- and multiple-dose regimens; Evidence for accumulation of tacrine in brain tissue. Drug Metab. Dispos. 24, 628-633
- Matsui, K., Mishima, M., Nagai, Y., Yuzuriha, T., and Yoshimura, T. (1999) Absorption, Distribution, Metabolism, and Excretion of Donepezil (Aricept) after a Single Oral Administration to Rat. Drug Metab. Dispos. 27, 1406-1414
- Metting, T.L., Burgio, D.E., Terry, A.V., Beach, J.W., Mccurdy, C.R., and Allen, D.D. (1998) Inhibition of brain choline uptake by isoarecolone and lobeline derivatives: implications for potential vector-mediated brain drug delivery. Neurosci. Let. 258, 25-28 https://doi.org/10.1016/S0304-3940(98)00871-4
- Nitsch, R.M., Blusztajn, J.K., Pittas, A.G., Slack, B.E., Growdon, J.H., and Wurtman, R.J. (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. USA 89, 1671-1675 https://doi.org/10.1073/pnas.89.5.1671
- Ohtsuki, S., and Terasaki T. (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 24, 1745-1758 https://doi.org/10.1007/s11095-007-9374-5
- Pardridge, W.M. (1988) Recent advances in blood-brain barrier transport. Annu. Rev. Pharmacol. Toxicol. 28, 25-39 https://doi.org/10.1146/annurev.pa.28.040188.000325
- Rho, J.P., and Lipson, L.G. (1997) Focus on donepezil: A reversible acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Formulary 32, 677-678
- Sawada, N., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T., and Sawada, Y. (1999) Choline uptake by mouse brain capillary endothelial cells in culture. J. Pharm. Pharmacol. 51, 847-852 https://doi.org/10.1211/0022357991773050
- Smith, Q.R. (1993) Drug delivery to brain and the role of carriermediated transport. Adv. Exp. Med. Biol. 331, 83-93 https://doi.org/10.1007/978-1-4615-2920-0_14
- Spector, R. (1989) Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J. Neurochem. 53, 1667-1674 https://doi.org/10.1111/j.1471-4159.1989.tb09229.x
- Takada, Y., Vistica, D.T., Greig, N.H., Purdon, D., Rapoport, S.I., and Smith, Q.R. (1992) Rapid high affinity transport of a chemotherapeutic amino acid across the blood-brain barrier. Cancer Res. 52, 2191-2196
- Takanaga, H., Ohtsuki, S., Hosoya, K., and Terasaki, T. (2001) GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J. Cereb. Blood Flow Metabol. 21, 1232-1239 https://doi.org/10.1097/00004647-200110000-00012
- Wurtman, R.J. (1992) Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci. 15, 117-122 https://doi.org/10.1016/0166-2236(92)90351-8
-
Zhao, Q., Pahlmark, K., Smith, M.L., and Siesjo, B.K. (1994) Delayed treatment with the spin trap
$\alpha$ -phenyl-n-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol. Scand. 152, 349-350 https://doi.org/10.1111/j.1748-1716.1994.tb09816.x
Cited by
- The Inhibitory Effect of Rivastigmine and Galantamine on Choline Transport in Brain Capillary Endothelial Cells vol.18, pp.1, 2008, https://doi.org/10.4062/biomolther.2010.18.1.065