Hydrolysis of Isoflavone Glucosides in Soymilk Fermented with Single or Mixed Cultures of Lactobacillus paraplantarum KM, Weissella sp. 33, and Enterococcus faecium 35 Isolated from Humans

  • Chun, Ji-Yeon (Department of Food Science and Technology, Sunchon National University) ;
  • Jeong, Woo-Ju (Department of Food Science and Technology, Sunchon National University) ;
  • Kim, Jong-Sang (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Lim, Jin-Kyu (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Park, Cheon-Seok (Department of Food Science & Biotechnology, Kyung Hee University) ;
  • Kwon, Dae-Young (Food Function Research Division, Korea Food Research Institute) ;
  • Choi, In-Duck (Post-Harvest Technology Division, National Institute of Crop Science, RDA) ;
  • Kim, Jeong-Hwan (Department of Food Science and Technology, Sunchon National University)
  • Published : 2008.03.31

Abstract

Lactobacillus paraplantarum KM (Lp), Weissella sp. 33 (Ws), and Enterococcus faecium 35 (Ef) were used in single (Lp, Ws, Ef) or mixed cultures (Lp+Ws, Lp+Ef, Ws+Ef) for soy milk fermentation ($37^{\circ}C$, 12 h). After 12 h, the cell numbers, pH, and TA of soymilk were $7.4{\times}10^8-6.0{\times}10^9CFU/ml$, 3.8-4.5, and 0.59-0.70%, respectively. Changes in the contents of glycitin and genistin in soymilk fermented with Ef were not significant. The contents of isoflavone glucosides in soymilk fermented with the other cultures decreased significantly with an increase of aglycone contents (p<0.05). It corresponded well with a sharp increase in ${\beta}$-glucosidase activity during fermentation. About 92-100% of the daidzin and 98-100% of the genistin in soymilk were converted to corresponding aglycones by Lp, Ws, or Lp+Ef within 12 h.

Keywords

References

  1. AOAC. 1984. Official Methods of Analysis, 14th Ed. Association of Official Analytical Chemists, Washington, D.C. U.S.A.
  2. Brown, J. P. 1988. Hydrolysis of glycosides and esters, pp. 109-144. In R. Rowland (ed.). Role of the Gut Flora in Toxicity and Cancer. Academic Press, San Diego, CA
  3. Chien, H. L., H. Y. Huang, and C. C. Chou. 2006. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 772-778 https://doi.org/10.1016/j.fm.2006.01.002
  4. Choi, Y. B., J. G. Woo, and W. S. Noh. 1999. Hydrolysis of $\beta$-glucosidic bonds of isoflavone conjugates in the lactic acid fermentation of soy milk. Kor. J. Food Sci. Technol. 31: 189-195
  5. Chun, J. Y., G. M. Kim, G. H. Kwon, J. Y. Park, S. J. Jeong, K. W. Lee, I. D. Choi, J. S. Kim, and J. H. Kim. 2007. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J. Food Sci. 72: M39-M44
  6. Granata, L. A. and C. V. Morr. 1996. Improved acid, flavor and volatile compound production in a high-protein and fiber soymilk yogurt-like product. J. Food Sci. 61: 331-336 https://doi.org/10.1111/j.1365-2621.1996.tb14188.x
  7. Hutchins, A. M., J. L. Slavin, and J. W. Lampe. 1995. Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J. Am. Diet. Assoc. 95: 545-551 https://doi.org/10.1016/S0002-8223(95)00149-2
  8. Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699 https://doi.org/10.1093/jn/130.7.1695
  9. Jacobsen, B. K., S. F. Knutsen, and G. E. Fraser. 1998. Does high soy milk intake reduce prostate cancer incidence ? The Adventist Health Study (United States). Cancer Causes Control 9: 553-557 https://doi.org/10.1023/A:1008819500080
  10. Kim, J.-E., J. Y. Kim, K. W. Lee, and H. J. Lee. 2007. Cancer chemopreventive effects of lactic acid bacteria. J. Microbiol. Biotechnol. 17: 1227-1235
  11. Kim, J.-E., H. J. Hur, K. W. Lee, and H. J. Lee. 2007. Anti-inflammatory effects of recombinant arginine deiminase originating from Lactococcus lactis ssp. lactis ATCC 7962. J. Microbiol. Biotechnol. 17: 1491-1497
  12. Kim, S.-J., C.-M. Lee, M.-Y. Kim, Y.-S. Yeo, S.-H. Yoon, H.-C. Kang, and B.-S. Koo. 2007. Screening and characterization of an enzyme with $\beta$-glucosidase activity from environmental DNA. J. Microbiol. Biotechnol. 17: 905-912
  13. Matsuda, S., F. Norimoto, Y. Matsumoto, R. Ohba, Y. Teramoto, N. Ohta, and S. Ueda. 1994. Solubilization of a novel isoflavone glycoside-hydrolyzing $\beta$-glucosidase from Lactobacillus casei subsp. rhamnosus. J. Ferment. Bioeng. 77: 439-441 https://doi.org/10.1016/0922-338X(94)90021-3
  14. Matsuura, M. and A. Obata. 1993. $\beta$-Glucosidase from soybeans hydrolyze daidzin and genistin. J. Food Sci. 58: 144-147 https://doi.org/10.1111/j.1365-2621.1993.tb03231.x
  15. McCue, P. P. and K. Shetty. 2005. Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 40: 1791-1797 https://doi.org/10.1016/j.procbio.2004.06.067
  16. Omoni, A. O. and R. E. Aluko. 2005. Soybean foods and their benefits: Potential mechanisms of action. Nutr. Rev. 63: 272-283 https://doi.org/10.1111/j.1753-4887.2005.tb00141.x
  17. Otieno, D. O., J. F. Ashton, and N. P. Shah. 2006. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus, and Lactobacillus casei. Food Res. Int. 39: 394-407 https://doi.org/10.1016/j.foodres.2005.08.010
  18. Pinthong, R., R. Macrae, and J. Dick. 1980. The development of a soya-based yoghurt. J. Food Technol. 15: 647-667 https://doi.org/10.1111/j.1365-2621.1980.tb00985.x
  19. Pyo, Y. H., T. C. Lee, and Y. C. Lee. 2005. Enrichment of bioactive isoflavones in soymilk fermented with $\beta$-glucosidaseproducing lactic acid bacteria. Food Res. Int. 38: 551-559 https://doi.org/10.1016/j.foodres.2004.11.008
  20. Richelle, M., S. Pridmore-Merten, S. Bodenstab, M. Enslen, and E. A. Offord. 2002. Hydrolysis of isoflavone glycosides to aglycones by beta-glycosidase does not alter plasma and urine isoflavone pharmacokinetics in postmenopausal women. J. Nutr. 132: 2587-2592 https://doi.org/10.1093/jn/132.9.2587
  21. SAS Institute, Inc. 1990. SAS User's Guide. SAS Institute, Inc., Cary, N.C.
  22. Setchell, K. D. R., N. M. Brown, L. Zimmer-Nechemias, W. T. Brashear, B. E. Wolfe, A. S. Kirschner, and J. E. Heubi. 2002. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 76: 447-453 https://doi.org/10.1093/ajcn/76.2.447
  23. Wang, H. and P. A. Murphy. 1994. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42: 1666-1673 https://doi.org/10.1021/jf00044a016
  24. Wang, Y. C., R. C. Yu, H. Y. Yang, and C. C. Chou. 2003. Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiol. 20: 333-338 https://doi.org/10.1016/S0740-0020(02)00125-9
  25. Wang, Y. C., R. C. Yu, and C. C. Chou. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 128-135 https://doi.org/10.1016/j.fm.2005.01.020
  26. Xu, X., H. J. Wang, and P. A. Murphy. 1994. Daidzein is a more bioavailable soymilk isoflavone than genistein in adult woman. J. Nutr. 124: 825-832 https://doi.org/10.1093/jn/124.6.825
  27. Xu, X., S. H. Keecha, H. J. Wang, P. A. Murphy, and S. Hendrich. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125: 2307-2315 https://doi.org/10.1093/jn/125.9.2307