References
- AOAC. 1984. Official Methods of Analysis, 14th Ed. Association of Official Analytical Chemists, Washington, D.C. U.S.A.
- Brown, J. P. 1988. Hydrolysis of glycosides and esters, pp. 109-144. In R. Rowland (ed.). Role of the Gut Flora in Toxicity and Cancer. Academic Press, San Diego, CA
- Chien, H. L., H. Y. Huang, and C. C. Chou. 2006. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 772-778 https://doi.org/10.1016/j.fm.2006.01.002
-
Choi, Y. B., J. G. Woo, and W. S. Noh. 1999. Hydrolysis of
$\beta$ -glucosidic bonds of isoflavone conjugates in the lactic acid fermentation of soy milk. Kor. J. Food Sci. Technol. 31: 189-195 - Chun, J. Y., G. M. Kim, G. H. Kwon, J. Y. Park, S. J. Jeong, K. W. Lee, I. D. Choi, J. S. Kim, and J. H. Kim. 2007. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J. Food Sci. 72: M39-M44
- Granata, L. A. and C. V. Morr. 1996. Improved acid, flavor and volatile compound production in a high-protein and fiber soymilk yogurt-like product. J. Food Sci. 61: 331-336 https://doi.org/10.1111/j.1365-2621.1996.tb14188.x
- Hutchins, A. M., J. L. Slavin, and J. W. Lampe. 1995. Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J. Am. Diet. Assoc. 95: 545-551 https://doi.org/10.1016/S0002-8223(95)00149-2
- Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699 https://doi.org/10.1093/jn/130.7.1695
- Jacobsen, B. K., S. F. Knutsen, and G. E. Fraser. 1998. Does high soy milk intake reduce prostate cancer incidence ? The Adventist Health Study (United States). Cancer Causes Control 9: 553-557 https://doi.org/10.1023/A:1008819500080
- Kim, J.-E., J. Y. Kim, K. W. Lee, and H. J. Lee. 2007. Cancer chemopreventive effects of lactic acid bacteria. J. Microbiol. Biotechnol. 17: 1227-1235
- Kim, J.-E., H. J. Hur, K. W. Lee, and H. J. Lee. 2007. Anti-inflammatory effects of recombinant arginine deiminase originating from Lactococcus lactis ssp. lactis ATCC 7962. J. Microbiol. Biotechnol. 17: 1491-1497
-
Kim, S.-J., C.-M. Lee, M.-Y. Kim, Y.-S. Yeo, S.-H. Yoon, H.-C. Kang, and B.-S. Koo. 2007. Screening and characterization of an enzyme with
$\beta$ -glucosidase activity from environmental DNA. J. Microbiol. Biotechnol. 17: 905-912 -
Matsuda, S., F. Norimoto, Y. Matsumoto, R. Ohba, Y. Teramoto, N. Ohta, and S. Ueda. 1994. Solubilization of a novel isoflavone glycoside-hydrolyzing
$\beta$ -glucosidase from Lactobacillus casei subsp. rhamnosus. J. Ferment. Bioeng. 77: 439-441 https://doi.org/10.1016/0922-338X(94)90021-3 -
Matsuura, M. and A. Obata. 1993.
$\beta$ -Glucosidase from soybeans hydrolyze daidzin and genistin. J. Food Sci. 58: 144-147 https://doi.org/10.1111/j.1365-2621.1993.tb03231.x - McCue, P. P. and K. Shetty. 2005. Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 40: 1791-1797 https://doi.org/10.1016/j.procbio.2004.06.067
- Omoni, A. O. and R. E. Aluko. 2005. Soybean foods and their benefits: Potential mechanisms of action. Nutr. Rev. 63: 272-283 https://doi.org/10.1111/j.1753-4887.2005.tb00141.x
- Otieno, D. O., J. F. Ashton, and N. P. Shah. 2006. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus, and Lactobacillus casei. Food Res. Int. 39: 394-407 https://doi.org/10.1016/j.foodres.2005.08.010
- Pinthong, R., R. Macrae, and J. Dick. 1980. The development of a soya-based yoghurt. J. Food Technol. 15: 647-667 https://doi.org/10.1111/j.1365-2621.1980.tb00985.x
-
Pyo, Y. H., T. C. Lee, and Y. C. Lee. 2005. Enrichment of bioactive isoflavones in soymilk fermented with
$\beta$ -glucosidaseproducing lactic acid bacteria. Food Res. Int. 38: 551-559 https://doi.org/10.1016/j.foodres.2004.11.008 - Richelle, M., S. Pridmore-Merten, S. Bodenstab, M. Enslen, and E. A. Offord. 2002. Hydrolysis of isoflavone glycosides to aglycones by beta-glycosidase does not alter plasma and urine isoflavone pharmacokinetics in postmenopausal women. J. Nutr. 132: 2587-2592 https://doi.org/10.1093/jn/132.9.2587
- SAS Institute, Inc. 1990. SAS User's Guide. SAS Institute, Inc., Cary, N.C.
- Setchell, K. D. R., N. M. Brown, L. Zimmer-Nechemias, W. T. Brashear, B. E. Wolfe, A. S. Kirschner, and J. E. Heubi. 2002. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 76: 447-453 https://doi.org/10.1093/ajcn/76.2.447
- Wang, H. and P. A. Murphy. 1994. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42: 1666-1673 https://doi.org/10.1021/jf00044a016
- Wang, Y. C., R. C. Yu, H. Y. Yang, and C. C. Chou. 2003. Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiol. 20: 333-338 https://doi.org/10.1016/S0740-0020(02)00125-9
- Wang, Y. C., R. C. Yu, and C. C. Chou. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 128-135 https://doi.org/10.1016/j.fm.2005.01.020
- Xu, X., H. J. Wang, and P. A. Murphy. 1994. Daidzein is a more bioavailable soymilk isoflavone than genistein in adult woman. J. Nutr. 124: 825-832 https://doi.org/10.1093/jn/124.6.825
- Xu, X., S. H. Keecha, H. J. Wang, P. A. Murphy, and S. Hendrich. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125: 2307-2315 https://doi.org/10.1093/jn/125.9.2307