References
- Abouzied, M. M. and C. A. Reddy. 1986. Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 52: 1055-1059
- Abouzied, M. M. and C. A. Reddy. 1987. Fermentation of starch to ethanol by a complementary mixture of an amylolytic yeast and Saccharomyces cerevisiae. Biotechnol. Lett. 9: 59-62 https://doi.org/10.1007/BF01043395
- Altintas, M. M., K. Ulgen, B. Kirdar, Z. I. Onsan, and S. G. Oliver. 2002. Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme Microb. Technol. 31: 640-647 https://doi.org/10.1016/S0141-0229(02)00167-9
- Amin, G., R. De Mot, K. Van Kijek, and H. Verachtert. 1985. Direct alcoholic fermentation of starch biomass using amylolytic yeast strains in batch and immobilized cell systems. Appl. Microbiol. Biotechnol. 22: 237-245 https://doi.org/10.1007/BF00252023
- Birol, G., Z. I. Onsan, B. Kirdar, and S. G. Oliver. 1998. Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch. Enzyme Microb. Technol. 22: 1-6
- Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Chang. R. 1998. Chemistry, pp. 784-791. Sixth Ed. McGraw-Hill.
- David, H. G. 1994. Fungal Physiology, pp. 215-244. Second Ed. Wiley-Liss, New York
- De Mot, R., K. Van Kijek, A. Donkers, and H. Verachtert. 1985. Potentialities and limitations of direct alcoholic fermentation of starch material with amylolytic yeasts. Appl. Microbiol. Biotechnol. 22: 222-226 https://doi.org/10.1007/BF00253614
- Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 250-256 https://doi.org/10.1021/ac60110a033
-
Eksteen, J. M., P. van Rensburg, R. R. Cordero Otero, and I. S. Pretorius. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the
$\alpha$ -amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84: 639-646 https://doi.org/10.1002/bit.10797 - Goffrini, P., I. Ferrero, and C. Donnini. 2002. Resp irationdependent utilization of sugars in yeasts: A determinant role for sugar transporters. J. Bacteriol. 184: 427-432 https://doi.org/10.1128/JB.184.2.427-432.2002
- Han, Y. J. and T. S. Yu. 2005. Characterization of two forms of glucoamylase from traditional Korean nuruk fungi, Aspergillus coreanus NR 15-1. J. Microbiol. Biotechnol. 15: 239-246
-
Kang, H. S., J. K. Lee, M. H. Kim, and D. H. Park. 2006. Effect of electrochemical oxidation potential on biofilter for bacteriological oxidation of VOCs to CO
$_2$ . J. Microbiol. Biotechnol. 16: 399-408 -
Kim, K., C. S. Park, and J. R. Mattoon. 1988. High-efficiency, one-step starch utilization by transformed Saccharomyces cell which secrete both yeast glucoamylase and mouse
$\alpha$ -amylase. Appl. Environ. Microbiol. 54: 966-971 - Knox, A. M., J. C. Preez, and S. G. Kilian. 2004. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb. Technol. 34: 453-460 https://doi.org/10.1016/j.enzmictec.2003.12.010
- Kosaric, N., A. Wieczorek, G. P. Cosentino, R. J. Magee, and J. E. Prenosil. 1983. Ethanol Fermentation, pp. 257-285. In H. Dellweg (ed.), Vol. 3. Verlag Chemie, FL
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Laluce, C. and J. R. Mattoon. 1984. Development of rapidly fermenting strains of Saccharomyces diastaticus for direct conversion of starch and dextrins to ethanol. Appl. Environ. Microbiol. 48: 17-25
- Ma, Y. J., L. L. Lin, H. R. Chien, and W. H. Hsu. 2000. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol. Appl. Biochem. 31: 55-59 https://doi.org/10.1042/BA19990080
- Na, B. K., T. S. Hwang, S. H. Lee, D. H. Ahn, and D. H. Park. 2007. Effect of electrochemical redox reaction on growth and metabolism of Saccharomyces cerevisiae as an environmental factor. J. Microbol. Biotechnol. 17: 445-453
- Nakamura, Y., F. Kobayashi, M. Ohnaga, and T. Sawada. 1997. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol. Bioeng. 53: 21-25 https://doi.org/10.1002/(SICI)1097-0290(19970105)53:1<21::AID-BIT4>3.0.CO;2-0
- Nigam, P. and D. Singh. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17: 770-778 https://doi.org/10.1016/0141-0229(94)00003-A
- Oner, E. T., S. G. Oliver, and B. Kurdar. 2005. Production of ethanol from starch by respiration-deficient recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 71: 6443-6445 https://doi.org/10.1128/AEM.71.10.6443-6445.2005
- Shin, D., A. Yoo, S. W. Kim, and D. R. Yang. 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J. Microbiol. Biotechnol. 16: 135-1461
- Urszula, P. and J. Jamroz. 2007. The effect of pulse electric field on accumulation of selenium in cells of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 17: 1139-1146
- Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266 https://doi.org/10.1016/S0960-8524(99)00117-0
- Yun, S. H., B. I. Sang, and D. H. Park. 2005. Influence of NaCl on the growth and metabolism of Halomonas salina. J. Microbiol. Biotechnol. 15: 118-124