Purification and Characterization of Branching Specificity of a Novel Extracellular Amylolytic Enzyme from Marine Hyperthermophilic Rhodothermus marinus

  • Yoon, Seong-Ae (Center for Agricultural Biomaterials, Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University) ;
  • Ryu, Soo-In (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University) ;
  • Lee, Soo-Bok (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University) ;
  • Moon, Tae-Wha (Center for Agricultural Biomaterials, Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University)
  • Published : 2008.03.31

Abstract

An extracellular enzyme (RMEBE) possessing ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferring activity was purified to homogeneity from Rhodothermus marin us by combination of ammonium sulfate precipitation, Q-Sepharose ion-exchange, and Superdex-200 gel filtration chromatographies, and preparative native polyacrylamide gel electrophoresis. The purified enzyme had an optimum pH of 6.0 and was highly thermostable with a maximal activity at $80^{\circ}C$. Its half-life was determined to be 73.7 and 16.7 min at 80 and $85^{\circ}C$, respectively. The enzyme was also halophilic and highly halotolerant up to about 2M NaCl, with a maximal activity at 0.5M. The substrate specificity of RMEBE suggested that it possesses partial characteristics of both glucan branching enzyme and neopullulanase. RMEBE clearly produced branched glucans from amylose, with partial ${\alpha}-(1{\rightarrow}4)$-hydrolysis of amylose and starch. At the same time, it hydrolyzed pullulan partly to panose, and exhibited ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferase activity for small maltooligosaccharides, producing disproportionated ${\alpha}-(1{\rightarrow}6)$-branched maltooligosaccharides. The enzyme preferred maltopentaose and maltohexaose to smaller maltooligosaccharides for production of longer branched products. Thus, the results suggest that RMEBE might be applied for production of branched oligosaccharides from small maltodextrins at high temperature or even at high salinity.

Keywords

References

  1. Alfredsson, G. A., J. K. Kristjansson, S. Hjorleifsdottir, and K. O. Stetter. 1988. Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J. Gen. Microbiol. 134: 299-306
  2. Bae, S. S., Y. J. Kim, S. H. Yang, J. K. Lim, J. H. Jeon, H. S. Lee, S. G. Kang, S.-J. Kim, and J.-H. Lee. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16: 1826-1831
  3. Bjornsdottir, S. H., T. Blondal, G. O. Hreggvidsson, G. Eggertsson, S. Petursdottir, S. Hjorleifsdottir, S. H. Thorbjarnardottir, and J. K. Kristjansson. 2006. Rhodothermus marinus: Physiology and molecular biology. Extremophiles 10: 1-16
  4. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cho, H.-Y., Y.-W. Kim, T.-J. Kim, H.-S. Lee, D.-Y. Kim, J.-W. Kim, Y.-W. Lee, S.-B. Lee, and K.-H. Park. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta 1478: 333-340 https://doi.org/10.1016/S0167-4838(00)00037-6
  6. Fang, T. Y., W.-C. Tseng, C.-J. Yu, and T.-Y. Shih. 2005. Characterization of the thermophilic isoamylase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J. Mol. Catal. B Enzym. 33: 99-107 https://doi.org/10.1016/j.molcatb.2005.04.003
  7. Gomes, I., J. Gomes, and W. Steiner. 2003. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: Production and partial characterization. Bioresource Technol. 90: 207-214 https://doi.org/10.1016/S0960-8524(03)00110-X
  8. Guan, H., P. Li, J. Imparl-Radesevich, J. Preiss, and P. Keeling. 1997. Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch. Biochem. Biophys. 342: 92-98 https://doi.org/10.1006/abbi.1997.0115
  9. Halldorsdottir, S., E. T. Thorolfsdottir, R. Spilliaert, M. Johansson, S. H. Thorbjarnardottir, A. Palsdottir, G. O. Hreggvidsson, J. K. Kristjansson, O. Holst, and G. Effertsson. 1998. Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12. Appl. Microbiol. Biotechnol. 49: 277-284 https://doi.org/10.1007/s002530051169
  10. Hobel, C. F. V., G. O. Hreggvidsson, V. T. Marteinsson, F. Bahrani-Mougeout, J. M. Einarsson, and J. K. Kristjansson. 2005. Cloning, expression and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus. Extremophiles 9: 53-64 https://doi.org/10.1007/s00792-004-0422-3
  11. Park, J.-H., K.-H. Park, and J.-L. Jane. 2007. Physicochemical properties of enzymatically modified maize starch using 4-$\alpha$-glucanotransferase. Food Sci. Biotechnol. 16: 902-909
  12. Kuriki, T., M. Yanase, H. Takata, Y. Takesada, T. Imanaka, and S. Okada. 1993. A new way of producing isomaltooligosaccharide syrup by using the transglycosylation reaction of neopullulanase. Appl. Environ. Microbiol. 59: 953-959
  13. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  14. Murakami, T., T. Kanai, H. Takata, T. Kuriki, and T. Imanaka. 2006. A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 188: 5915-5924 https://doi.org/10.1128/JB.00390-06
  15. Nordberg, K. E., E. Bartonek-Roxa, and O. Holst. 1997. Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim. Biophys. Acta 1353: 118-124 https://doi.org/10.1016/S0167-4781(97)00093-6
  16. Nunes, O. C., M. M. Donato, and M. M. da Costa. 1992. Isolation and characterization of Rhodothermus strains from S-miguel, Azores. Syst. Appl. Microbiol. 15: 92-97
  17. Park, N.-Y., J. Cha, D.-O. Kim, and C.-S. Park. 2007. Enzymatic characterization and substrate specificity of thermostable $\beta$-glycosidase from hyperthermophilic archaea, Sulfolobus shibatae, expressed in E. coli. J. Microbiol. Biotechnol. 17: 454-460
  18. Park, N.-Y., N.-I. Baek, J. Cha, S.-B. Lee, J.-H. Auh, and C.-S. Park. 2005. Production of new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae $\beta$-glycosidase. Carbohydr. Res. 340: 1089-1096 https://doi.org/10.1016/j.carres.2005.02.003
  19. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A.
  20. Shinohara, M. L., M. Ihara, M. Abo, M. Hashida, S. Takagi, and T. C. Beck. 2001. A novel thermostable branching enzyme from an extremely thermophilic bacterial species, Rhodothermus obamensis. Appl. Microbiol. Biotechnol. 57: 653-659 https://doi.org/10.1007/s00253-001-0841-3
  21. Silva, Z., C. Horta, M. S. da Costa, A. P. Chung, and F. A. Rainey. 2000. Polyphasic evidence for the reclassification of Rhodothermus obamensis Sako et al. 1996 as a member of the species Rhodothermus marinus Alfredsson et al. 1988. Int. J. Syst. Evol. Microbiol. 50: 1457-1461 https://doi.org/10.1099/00207713-50-4-1457
  22. Spilliaert, R., G. O. Hreggvidsson, J. K. Kristjansson, G. Effertsson, and A. Palsdottir. 1994. Cloning and sequencing of a Rhodothermus marinus gene, BglA, coding for a thermostable beta-glucanase and its expression in Escherichia coli. Eur. J. Biochem. 224: 923-930 https://doi.org/10.1111/j.1432-1033.1994.00923.x
  23. Tonozuka, T., S. Mogi, Y. Shimura, A. Ibuka, H. Sakai, H. Matsuzawa, Y. Sakano, and T. Ohta. 1995. Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing $\alpha$-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. Biochim. Biophys. Acta 1252: 35-42 https://doi.org/10.1016/0167-4838(95)00101-Y
  24. Van, T. T. K., S.-I. Ryu, K.-J. Lee, E.-J. Kim, and S.-B. Lee. 2007. Cloning and characterization of glycogen-debranching enzyme from hyperthermophilic archaeon Sulfolobus shibatae. J. Microbiol. Biotechnol. 17: 792-799
  25. Van der Maarel, M. J. E. C., A. Vos, P. Sanders, and L. Dkjkhuizen. 2003. Properties of the glucan branching enzyme of the hyperthermophilic bacterium Aquifex aeolicus. Biocatal. Biotransform. 21: 199-207 https://doi.org/10.1080/10242420310001618528
  26. Vinogradov, E. and K. Bock. 1998. Structural determination of some new oligosaccharides and analysis of the branching pattern of isomaltooligosaccharides from beer. Carbohydr. Res. 309: 57-64 https://doi.org/10.1016/S0008-6215(98)00119-0
  27. Yang, S.-J., H.-S. Lee, C.-S. Park, Y.-R. Kim, T.-W. Moon, and K.-H. Park. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an $\alpha$-amylase and a cyclodextrin-hydrolyzing enzyme. Appl. Environ. Microbiol. 70: 5988-5995 https://doi.org/10.1128/AEM.70.10.5988-5995.2004