Molecular Cloning and Characterization of a Bile Salt Hydrolase from Lactobacillus acidophilus PF01

  • Oh, Hae-Keun (Bio-Resources Institute, EASY BIO System) ;
  • Lee, Ji-Yoon (Division of Agricultural Biotechnology, Seoul National University) ;
  • Lim, Soo-Jin (Department of Animal Resources Science, Dankook University) ;
  • Kim, Min-Jeong (Department of Animal Resources Science, Dankook University) ;
  • Kim, Geun-Bae (Department of Animal Science and Technology, Chungang University) ;
  • Kim, Jung-Hoan (School of Natural Food Sciences, Eulji University) ;
  • Hong, Soon-Kwang (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
  • Published : 2008.03.31

Abstract

Phenotypic screening for bile salt hydrolase (BSH) activity was performed on Lactobacillus acidophilus PF01 isolated from piglet feces. A gene encoding BSH was identified and cloned from the genomic library of L. acidophilus PF01. The bsh gene and surrounding regions were characterized by nucleotide sequence analysis and were found to contain a single open reading frame (ORF) of 951 nucleotides encoding a 316 amino acid protein. The potential bsh promoter region was located upstream of the start codon. The protein deduced from the complete ORF had high similarity with other BSHs, and four amino acid motifs located around the active site, FGRNXD, AGLNF, VLTNXP, and GXGXGXXGXPGD, were highly conserved. The bsh gene was cloned into the pET21b expression vector and expressed in Escherichia coli BLR(DE3) by induction with 0.1mM of isopropylthiogalactopyranoside. The BSH enzyme was purified with apparent homogeneity using a $Ni^{2+}$-NTA agarose column and characterized. The overexpressed recombinant BSH enzyme of L. acidophilus PF01 exhibited hydrolase activity against tauroconjugated bile salts, but not glycoconjugated bile salts. It showed the highest activity against taurocholic acid. The maximum BSH activity occurred at approximately $40^{\circ}C$. The enzyme maintained approximately 70% of its maximum activity even at $60^{\circ}C$, whereas its activity rapidly decreased at below $37^{\circ}C$. The optimum pH was 6, and BSH activity was rapidly inactivated below pH 5 and above pH 7.

Keywords

References

  1. Ahn, Y. T., K. L. Lim, J. C. Ryu, D. K. Kang, J. S. Ham, Y. H. Jang, and H. U. Kim. 2002. Characterization of Lactobacillus acidophilus isolated from piglets and chicken. Asian Aust. J. Anim. Sci. 15: 1790-1797 https://doi.org/10.5713/ajas.2002.1790
  2. Begley, M., C. Hill, and C. G. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738 https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  3. Buck, L. M. and S. E. Gilliland. 1994. Comparisons of freshly isolated strains of Lactobacillus acidophilus of human intestinal origin for ability to assimilate cholesterol during growth. J. Dairy Sci. 77: 2925-2933 https://doi.org/10.3168/jds.S0022-0302(94)77233-7
  4. Burr, T., J. Mitchell, A. Kolb, S. Minchin, and S. Busby. 2000. DNA sequence elements located immediately upstream of the -10 hexamer in Escherichia coli promoters: A systematic study. Nucleic Acids Res. 28: 1864-1870 https://doi.org/10.1093/nar/28.9.1864
  5. Christiaens, H., R. J. Leer, P. H. Pouwels, and W. Verstraete. 1992. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58: 3792-3798
  6. Coleman, J. P. and L. L. Hudson. 1995. Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61: 2514-2520
  7. Corzo, G. and S. E. Gilliland. 1999. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J. Dairy Sci. 82: 472-480 https://doi.org/10.3168/jds.S0022-0302(99)75256-2
  8. De Boever, P. and W. Verstraete. 1999. Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J. Appl. Microbiol. 87: 345-352 https://doi.org/10.1046/j.1365-2672.1999.00019.x
  9. De Smet, I., L. Van Hoorde, N. De Saeyer, M. Vande Woestyne, and W. Verstraete. 1994. In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb. Ecol. Health Dis. 7: 315-329 https://doi.org/10.3109/08910609409141371
  10. Delpino, M. V., M. I. Marchesini, S. M. Estein, D. J. Comerci, J. Cassataro, C. A. Fossati, and P. C. Baldi. 2007. A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect. Immun. 75: 299-305 https://doi.org/10.1128/IAI.00952-06
  11. Dussurget, O., D. Cabanes, P. Dehoux, M. Lecuit, C. Buchrieser, P. Glaser, and P. Cossart. 2002. European Listeria genome consortium. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45: 1095-1106 https://doi.org/10.1046/j.1365-2958.2002.03080.x
  12. Elkins, C. A., S. A. Moser, and D. C. Savage. 2001. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiology 147: 3403-3412 https://doi.org/10.1099/00221287-147-12-3403
  13. El-Osta, Y. G., A. J. Hillier, and M. Dobos. 2005. Construction of a combined physical and genetic map of the chromosome of Lactobacillus acidophilus ATCC 4356 and characterization of the rRNA operons. Microbiology 151: 875-892 https://doi.org/10.1099/mic.0.27134-0
  14. Eyssen, H. 1973. Role of the gut microflora in metabolism of lipids and sterols. Proc. Nutr. Soc. 32: 59-63 https://doi.org/10.1079/PNS19730016
  15. Gopal-Srivastava, R. and P. B. Hylemon. 1988. Purification and characterization of bile salt hydrolase from Clostridium perfringens. J. Lipid Res. 29: 1079-1085
  16. Greene, J. D. and T. R. Klaenhammer. 1994. Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60: 4487-4494
  17. Guarner, F. and G. J. Schaafsma. 1998. Probiotics. Int. J. Food Microbiol. 39: 237-238 https://doi.org/10.1016/S0168-1605(97)00136-0
  18. Ha, C.-G., J.-K. Cho, C.-H. Lee, Y.-G. Chai, Y.-A. Ha, and S. H. Shin. 2006. Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. J. Microbiol. Biotechnol. 16: 1201-1209
  19. Ha, C.-G., J.-K. Cho, Y.-G. Chai, Y.-A. Ha, and S. H. Shin. 2006. Purification and characterization of bile salt hydrolase from Lactobacillus plantarum CK 102. J. Microbiol. Biotechnol. 16: 1047-1052
  20. Han, K. S., Y. Kim, S. Choi, S. Oh, S. Park, S. H. Kim, and K. Y. Whang. 2005. Rapid identification of Lactobacillus acidophilus by restriction analysis of the 16S-23S rRNA intergenic spacer region and flanking 23S rRNA gene. Biotechnol. Lett. 27: 1183-1188 https://doi.org/10.1007/s10529-005-0014-z
  21. Han, S. Y., C. S. Huh, Y. T. Ahn, K. S. Lim, Y. J. Baek, and D. H. Kim. 2005. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890
  22. Hoffman, N. E. and A. F. Hofmann. 1977. Metabolism of steroid and amino acid moieties of conjugated bile acids in man. V. Equations for the perturbed enterohepatic circulation and their application. Gastroenterology 72: 141-148
  23. Kim, G.-B., C. M. Miyamoto, E. A. Meighen, and B. H. Lee. 2004. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl. Environ. Microbiol. 70: 5603-5612 https://doi.org/10.1128/AEM.70.9.5603-5612.2004
  24. Kim, G.-B., S. H. Yi, and B. H. Lee. 2004. Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. J. Dairy Sci. 87: 258-266 https://doi.org/10.3168/jds.S0022-0302(04)73164-1
  25. Kim, G.-B. and B. H. Lee. 2005. Biochemical and molecular insights into bile salt hydrolase in the gastrointestinal microflora: A Review. Asian Aust. J. Anim. Sci. 18: 1505-1512 https://doi.org/10.5713/ajas.2005.1505
  26. Kumar, R. S., J. A. Brannigan, A. A. Prabhune, A. V. Pundle, G. G. Dodson, E. J. Dodson, and C. G. Suresh. 2006. Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J. Biol. Chem. 281: 32516-32525 https://doi.org/10.1074/jbc.M604172200
  27. Kurdi, P., H. W. van Veen, H. Tanaka, I. Mierau, K. N. Konings, G. W. Tannock, F. Tomita, and A. Yokota. 2000. Cholic acid is accumulated spontaneously, driven by membrane delta pH, in many lactobacilli. J. Bacteriol. 182: 6525-6528 https://doi.org/10.1128/JB.182.22.6525-6528.2000
  28. Kurdi, P., H. Tanaka, H. W. van Veen, K. Asano, F. Tomita, and A. Yokota. 2003. Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria. Microbiology 149: 2031-2037 https://doi.org/10.1099/mic.0.26376-0
  29. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  30. Larsen, C. T., C. Sorum, J. F. Hansen, H. A. Jensen, and V. Rasmussen. 2000. Blood pressure level and relation to other cardiovascular risk factors in male hypertensive patients without clinical evidence of ischemic heart disease. Blood Press 9: 91-97 https://doi.org/10.1080/08037050050151780
  31. Lee, Y. H., E. J. Shin, J. H. Lee, and J. H. Park. 1999. Lactobacillus acidophilus inhibits the Helicobacter pylori adherence. J. Microbiol. Biotechnol. 9: 794-797
  32. Lundeen, S. G. and D. C. Savage. 1990. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. J. Bacteriol. 172: 4171-4177 https://doi.org/10.1128/jb.172.8.4171-4177.1990
  33. Masui, T. and E. Staple. 1966. The formation of bile acids from cholesterol. The conversion of 5-beta-cholestane-3-alpha, 7-alpha-triol-26-oic acid to cholic acid via 5-beta-cholestane-3-alpha, 7-alpha,12-alpha, 24-xi-tetraol-26-oic acid I by rat liver. J. Biol. Chem. 241: 3889-3893
  34. McAuliffe, O., R. J. Cano, and T. R. Klaenhammer. 2005. Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71: 4925-4929 https://doi.org/10.1128/AEM.71.8.4925-4929.2005
  35. McCracken, A. and P. Timms. 1999. Efficiency of transcription from promoter sequence variants in Lactobacillus is both strain and context dependent. J. Bacteriol. 181: 6569-6572
  36. Nguyen, T. D. T., J. H. Kang, and M. S. Lee. 2007. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol. 113: 358-361 https://doi.org/10.1016/j.ijfoodmicro.2006.08.015
  37. Olsson, A. and U. Uhlen. 1986. Sequencing and heterologous expression of the gene encoding penicillin V amidase from Bacillus sphaericus. Gene 45: 175-181 https://doi.org/10.1016/0378-1119(86)90252-0
  38. Park, S. Y., Y. T. Ko, H. K. Jeong, J. O. Yang, H. S. Chung, Y. B. Kim, and G. E. Ji. 1996. Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid, bile and antibiotics. Kor. J. Microbiol. Biotechnol. 24: 304-310
  39. Park, Y. H., J. G. Kim, Y. W. Shin, S. H. Kim, and K. Y. Hwang. 2007. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J. Microbiol. Biotechnol. 17: 655-662
  40. Rossocha, M., R. Schultz-Heienbrok, H. von Moeller, J. P. Coleman, and W. Saenger. 2005. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemistry 44: 5739-5748 https://doi.org/10.1021/bi0473206
  41. Sambrook, J. and D. W. Russell. 2001. Gene Cloning. A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  42. Saarela, M., G. Mogensen, R. Fonden, J. Matto, and T. Mattila-Sandholm. 2000. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84: 197-215 https://doi.org/10.1016/S0168-1656(00)00375-8
  43. Sanders, M. E. and T. R. Klaenhammer. 2001. Invited review: The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319-331 https://doi.org/10.3168/jds.S0022-0302(01)74481-5
  44. Savage, D. C. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31: 107-133 https://doi.org/10.1146/annurev.mi.31.100177.000543
  45. Stellwag, E. J. and P. B. Hylemon. 1976. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim. Biophys. Acta 452: 165-176 https://doi.org/10.1016/0005-2744(76)90068-1
  46. Tanaka, H., K. Doesburg, T. Iwasaki, and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82: 2530-2535 https://doi.org/10.3168/jds.S0022-0302(99)75506-2
  47. Tanaka, H., H. Hashiba, J. Kok, and I. Mierau. 2000. Bile salt hydrolase of Bifidobacterium longum: Biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 2502-2512 https://doi.org/10.1128/AEM.66.6.2502-2512.2000
  48. Tannock, G. W., A. Tangerman, A. Van Schaik, and M. A. McConnell. 1994. Deconjugation of bile acids by lactobacilli in the mouse small bowel. Appl. Environ. Microbiol. 60: 3419-3420
  49. Taranto, M. P., M. Medici, G. Perdigon, A. P. Ruiz Holgado, and G. F. Valdez. 2000. Effect of Lactobacillus reuteri on the prevention of hypercholesterolemia in mice. J. Dairy Sci. 83: 401-403 https://doi.org/10.3168/jds.S0022-0302(00)74895-8
  50. Thomas, L. A., M. J. Veysey, T. Bathgate, A. King, G. French, N. C. Smeeton, G. M. Murphy, and R. H. Dowling. 2000. Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology 119: 806-815 https://doi.org/10.1053/gast.2000.16495
  51. Thompson, J. D., D. G. Higgins, T. J. Gibson, and W. Clustal. 1994. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  52. Tuomola, E., R. Crittenden, M. Playne, E. Isolauri, and S. Salminen. 2001. Quality assurance criteria for probiotic bacteria. Am. J. Clin. Nutr. 73: 393S-398S https://doi.org/10.1093/ajcn/73.2.393s
  53. Turley, S. D. and J. M. Dietschy. 1988. The metabolism and excretion of cholesterol by the liver, pp. 617-641. In I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafzitz (eds.), The Liver Biology and Pathobiology, 2nd Ed. Raven Press, New York
  54. Varcoe, J. J., G. Krejcarek, F. Busta, and L. Brady. 2003. Prophylactic feeding of Lactobacillus acidophilus NCFM to mice attenuates overt colonic hyperplasia. J. Food Prot. 66: 457-465 https://doi.org/10.4315/0362-028X-66.3.457