Functional Effects of Increased Copy Number of the Gene Encoding Proclavaminate Amidino Hydrolase on Clavulanic Acid Production in Streptomyces clavuligerus ATCC 27064

  • Song, Ju-Yeon (School of Biological Sciences, Seoul National University) ;
  • Kim, Eun-Sook (School of Biological Sciences, Seoul National University) ;
  • Kim, Dae-Wi (School of Biological Sciences, Seoul National University) ;
  • Jesen, Susan E. (Department of Biological Sciences, University of Alberta) ;
  • Lee, Kye-Joon (School of Biological Sciences, Seoul National University)
  • Published : 2008.03.31

Abstract

The effect of increasing levels of proclavaminate amidino hydrolase (Pah) on the rate of clavulanic acid production in Streptomyces clavuligerus ATCC 27064 was evaluated by increasing dosoge of a gene (pah2) encoding Pah. A strain (SMF5703) harboring a multicopy plasmid containing the pah2 gene showed significantly retarded cell growth and reduced clavulanic acid production, possibly attributable to the deleterious effects of the multicopy plasmid. In contrast, a strain (SMF5704) carrying a single additional copy of pah2 introduced into chromosome via an integrative plasmid showed enhanced production of clavulanic acid and increased levels of pah2 transcripts. Analysis of transcripts of other genes involved in the clavulanic acid biosynthetic pathway revealed a pattern similar to that seen in the parent. From these results, it appears that clavulanic acid production can be enhanced by duplication of pah2 through integration of a second copy of the gene into chromosome. However, increasing the copy number of only one gene, such as pah2, does not affect the expression of other pathway genes, and so only modest improvements in clavulanic acid production can be expected. Flux controlled by Pah did increase when the copy number of pah2 was doubled, suggesting that under these growth conditions, Pah levels may be a limiting factor regulating the rate of clavulanic acid biosynthesis in S. clavuligerus.

Keywords

References

  1. Bachmann, B. O., R. Li, and C. A Townsend. 1998. $\beta$-Lactam synthetase: A new biosynthetic enzyme. Proc. Natl. Acad. Sci. USA 95: 9082-9086
  2. Baldwin, J. E., R. M. Adlington, J. S. Bryans, A. O. Bringhen, J. B. Coates, N. P. Crouch, M. D. Lloyd, C. J. Schofield, S. W. Elson, K. H. Baggaley, R. Cassels, and N. H. Nicholson. 1991. Isolation of dihydroclavaminic acid, an intermediate in the biosynthesis of clavulanic acid. Tetrahedron 47: 4089-4100 https://doi.org/10.1016/S0040-4020(01)86446-2
  3. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
  4. Brown, A. G., D. Butterworth, M. Cole, G. Hanscombe, J. D. Hood, C. Reading, and G. N. Rolison. 1976. Naturally occurring $\beta$-lactamase inhibitors with antibacterial activity. J. Antibiot. 29: 668-669 https://doi.org/10.7164/antibiotics.29.668
  5. Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645
  6. Elson, S. W., K. H. Baggaley, M. Davison, M. Fulston, N. H. Nicholson, G. D. Risbridger, and J. W. Tyler. 1993. The identification of three new biosynthetic intermediates and one further biosynthetic enzyme in the clavulanic acid pathway. J. Chem. Soc. Chem. Commun. 1993: 1212-1214
  7. Foulstone, M. and C. Reading. 1982. Assay of amoxycillin and clavulanic acid, the components Augmentin, in biological fluids with high performance liquid chromatography. Antimicrob. Agents Chemother. 22: 753-762 https://doi.org/10.1128/AAC.22.5.753
  8. Gust, B., G. Chandra, D. Jakimowicz, T. Yuqing, C. J. Bruton, and K. F. Chater. 2004. Lambda red-mediated genetic manipulation of antibiotic producing Streptomyces. Adv. Appl. Microbiol. 54: 107-128 https://doi.org/10.1016/S0065-2164(04)54004-2
  9. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  10. Hung, T. V., S. Malla, B. C. Park, K. Kiou, H. C. Lee, and J. K. Sohng. 2007. Enhancement of clavulanic acid by replicative and integrative expression of ccaR and cas2 in Streptomyces clavuligerus NRRL3585. J. Microbiol. Biotechnol. 17: 1538-1545
  11. Ishida, K., T. V. Hung, H. C. Lee, K. Liou, C. H. Shin, Y. J. Yoon, and J. K. Sohng. 2006. Degradation of clavulanic acid during the cultivation of Streptomyces clavuligerus; Instability of clavulanic acid by metabolites and proteins from the strain. J. Microbiol. Biotechnol. 16: 590-596
  12. Ives, P. R. and M. E. Bushell. 1997. Manipulation of the physiology of clavulanic acid production in Streptomyces clavuligerus. Microbiology 143: 3573-3579 https://doi.org/10.1099/00221287-143-11-3573
  13. Jensen, S. E., A. Wong, A. Griffin, and B. Barton. 2004. Streptomyces clavuligerus has a second copy of the proclavaminate amidinohydrolase gene. Antimicrob. Agents Chemother. 48: 514-520 https://doi.org/10.1128/AAC.48.2.514-520.2004
  14. Khaleeli, N., R. Li, and C. A. Townsend. 1999. Origin of the $\beta$-lactam carbons in clavulanic acid from an unusual thiamine pyrophosphate-mediated reaction. J. Am. Chem. Soc. 121: 9223-9224 https://doi.org/10.1021/ja9923134
  15. Kieser, T., M. J. Bibb, M. J. Butter, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich
  16. MacNeil, D. J., K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68 https://doi.org/10.1016/0378-1119(92)90603-M
  17. Marsh, E. N., M. D. Chang, and C. A. Townsend. 1992. Two isozymes of clavaminate synthase central to clavulanic acid formation: Cloning and sequencing of both genes from Streptomyces clavuligerus. Biochemistry 31: 12648-12657 https://doi.org/10.1021/bi00165a015
  18. Mellado, E., L. M. Lorenzana, M. Rodriguez-Saiz, B. Diez, P. Liras, and J. L. Barredo. 2002. The clavulanic acid biosynthetic cluster of Streptomyces clavuligerus: Genetic organization of the region upstream of the car gene. Microbiology 148: 1427-1438 https://doi.org/10.1099/00221287-148-5-1427
  19. Nicholson, N. H., K. H. Baggaley, R. Cassels, M. Davison, S. W. Elson, M. Fulston, J. W. Tyler, and S. R. Woroniecki. 1994. Evidence that the immediate biosynthetic precursor of clavulanic acid is its N-aldehyde analog. J. Chem. Soc. Chem. Commun. 1994: 1281-1282
  20. Ouzounis, C. A. and N. C. Kyrpides. 1994. On the evolution of arginases and related enzymes. J. Mol. Evol. 39: 101-104
  21. Paradkar, A. S., K. A. Aidoo, and S. E. Jensen. 1998. A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol. Microbiol. 27: 831-843 https://doi.org/10.1046/j.1365-2958.1998.00731.x
  22. Paradkar, A. S., R. H. Mosher, C. Anders, A. Griffin, J. Griffin, C. Hughes, P. Greaves, B. Barton, and S. E. Jensen. 2001. Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. Appl. Environ. Microbiol. 67: 2292-2297 https://doi.org/10.1128/AEM.67.5.2292-2297.2001
  23. Perez-Llarena, F. J., P. Liras, A. Rodriguez-Garcia, and J. F. Martin. 1997. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: Amplification results in overproduction of both beta-lactam compounds. J. Bacteriol. 179: 2053-2059 https://doi.org/10.1128/jb.179.6.2053-2059.1997
  24. Perez-Redondo, R., A. Rodriguez-Garcia, J. F. Martin, and P. Liras. 1998. The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. Gene 211: 311-321 https://doi.org/10.1016/S0378-1119(98)00106-1
  25. Perez-Redondo, R., A. Rodriguez-Garcia, J. F. Martin, and P. Liras. 1999. Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol-containing medium: Evidence for two different genes in formation of the C3 unit. J. Bacteriol. 181: 6922-6928
  26. Pirt, S. J. 1975. Parameters of growth and analysis of growth data, pp. 4-14. In: Principles of Microbe and Cell Cultivation. Blackwell, Oxford, U.K.
  27. Quesenberry, M. S. and Y. C. Lee. 1996. A rapid formaldehyde assay using purpald reagent: Application under periodation conditions. Anal. Biochem. 234: 50-55 https://doi.org/10.1006/abio.1996.0048
  28. Romero, J., P. Liras, and J. F. Martin. 1984. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 20: 318-325 https://doi.org/10.1007/BF00270593
  29. Ryu, Y. G., W. Jin, J. Y Kim, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
  30. Salowe, S. P., E. N. Marsh, and C. A. Townsend. 1990. Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: An unusual oxidative enzyme in natural product biosynthesis. Biochemistry 29: 6499-6508 https://doi.org/10.1021/bi00479a023
  31. Salowe, S. P., W. J. Krol, D. Iwata-Reuyl, and C. A. Townsend. 1991. Elucidation of the order of oxidations and identification of an intermediate in the multistep clavaminate synthase reaction. Biochemistry 30: 2281-2292 https://doi.org/10.1021/bi00222a034
  32. Sambrook, J., E. F. Fritsch, and T. Maniatis. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  33. Saudagar, P. S. and R. S. Singhal. 2007. Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus. Bioresour. Technol. 98: 2010-2017 https://doi.org/10.1016/j.biortech.2006.08.003
  34. Tahlan, K., C. Anders, and S. E. Jensen. 2004. The paralogous pairs of genes involved in clavulanic acid and clavam metabolite biosynthesis are differently regulated in Streptomyces clavuligerus. J. Bacteriol. 186: 6286-6297 https://doi.org/10.1128/JB.186.18.6286-6297.2004
  35. Valentine, B. P., C. R. Bailey, A. Doherty, J. Morris, S. W. Elson, K. H. Baggaley, and N. H. Nicholson. 1993. Evidence that arginine is a later metabolic intermediate than ornithine in the biosynthesis of clavulanic acid by Streptomyces clavuligerus. J. Chem. Soc. Chem. Commun. 1993: 1210-1211
  36. Vara, J., M. Lewandowska-Skarbek, Y. G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881 https://doi.org/10.1128/jb.171.11.5872-5881.1989
  37. Wu, T. K., R. W. Busby, T. A. Houston, D. B. McIlwaine, L. A. Egan, and C. A. Townsend. 1995. Identification, cloning, sequencing, and overexpression of the gene encoding proclavaminate amidino hydrolase and characterization of protein function in clavulanic acid biosynthesis. J. Bacteriol. 177: 3714-3720 https://doi.org/10.1128/jb.177.13.3714-3720.1995