Microbial Biodegradation and Toxicity of Vinclozolin and its Toxic Metabolite 3,5-Dichloroaniline

  • Lee, Jung-Bok (School of Bioresource Sciences, Andong National University) ;
  • Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University) ;
  • Shin, Kee-Sun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Kim, Jong-Sik (Department of Biological Science, Andong National University) ;
  • Jo, Min-Sub (School of Bioresource Sciences, Andong National University) ;
  • Jeon, Chun-Pyo (School of Bioresource Sciences, Andong National University) ;
  • Jang, Jong-Ok (School of Bioresource Sciences, Andong National University) ;
  • Kim, Jang-Eok (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kwon, Gi-Seok (School of Bioresource Sciences, Andong National University)
  • Published : 2008.02.29

Abstract

Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5-dichloroaniline in a minimal medium containing vinclozolin $(200{\mu}ml)$ or 3,5-dichloroaniline $(120{\mu}g/ml)$ were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

Keywords

References

  1. Adolfo, S. S., H. A. Barton, and M. F. Hughes. 2004. Liquid chromatography of the anti-androgen vinclozolin and its metabolites in rat serum. J. Cheromatogr. B 809: 105-110 https://doi.org/10.1016/j.jchromb.2004.06.002
  2. Cain, R. B. and J. A. Mitchell. 1996. Enhanced degradation of the fungicide vinclozolin; isolation and characterization of a responsible organism. Pestic. Sci. 48: 13-23 https://doi.org/10.1002/(SICI)1096-9063(199609)48:1<13::AID-PS446>3.0.CO;2-L
  3. Calhelha, R. C., J. V. Andrade, I. C. Ferreira, and L. M. Estevinho. 2006. Toxicity effects of fungicide residues on the wine-producing process. Food Microbiol. 23: 393-398 https://doi.org/10.1016/j.fm.2005.04.008
  4. Christine, N., D. Majken, R. L. Henrik, and M. A. Vinggaard. 2003. The combined effects of vinclozolin and procymidione do not deviate from expected additivity in vitro and in vivo. Toxicol. Sci. 71: 251-262 https://doi.org/10.1093/toxsci/71.2.251
  5. Dejonghe, W., J. Goris, A. Dierickx, V. De Dobbeleer, L. Crul, P. De. Vos, W. Verstraete, and E. M. Top. 2002. Diversity of 3- chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation. FEMS Microbiol. Ecol. 42: 315-325 https://doi.org/10.1111/j.1574-6941.2002.tb01021.x
  6. Dierickx, P. J. 2004. Cytotoxicity of the dicarboximide fungicides, vinclozolin and iprodione, in rat hepatoma-derived Fa32 cells. Altern. Lab. Anim. 32: 369-373
  7. Dixon, M. and E. C. Webb. 1964. Enzymes, pp. 950. 2nd Ed. Longmans, London and Colchester
  8. Golovleva, L. A., Z. I. Finkelstein, A. V. Polyakova, B. P. Baskanov, and M. Y. Nefedova. 1991. Microbial conversion of fungicide vinclozolin. J. Environ. Sci. Health B 26: 293-307 https://doi.org/10.1080/03601239109372736
  9. Goodfellow, M., G. Alderson, and J. Chun. 1998. Rhodococcal systematics: Problems and developments. Antonie van Leeuwenhoek 74: 3-20 https://doi.org/10.1023/A:1001730725003
  10. Gray, Jr. L. E., J. S. Ostby, E. Monosson, and W. R. Kelce. 1999. Environmental antiandrogens: Low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol. Ind. Health 15: 48-64 https://doi.org/10.1177/074823379901500106
  11. Herlia, P., C. Fimognari, F. Maffiei, F. Vigagni, R. Mesirca, L. Pzzetti, M. Paolini, and C. Forti. 1999. The genetic and nongenetic toxicity of the fungicide vinclozolin. Mutagenesis 11: 445-453 https://doi.org/10.1093/mutage/11.5.445
  12. Igarashi, A., S. Ohtsu, M. Muroi, and K. Tanamoto. 2006. Effects of possible endocrine disrupting chemicals on bacterial component-induced activation of NF-kappaB. Biol. Pharm. Bull. 29: 2120-2122 https://doi.org/10.1248/bpb.29.2120
  13. Jairaj, V. P., P. F. James, M. H. Thoas, D. B. Richard, and E. C. Carl. 2000. Biotransformation of vinclozolin by fungus Cunninghamella elegans. J. Agric. Food Chem. 48: 6138-6148 https://doi.org/10.1021/jf0008543
  14. Lo, H. H., P. I. Brown, and G. O. Rankin. 1990. Acute nephrotoxicity induced by isomeric dichloroanilines in Fisher 334 rats. Toxicology 63: 215-279 https://doi.org/10.1016/0300-483X(90)90044-H
  15. Mercadier, C. V. D. and J. Bastide. 1998. Chemical and biological transformation of the fungicide. J. Agric. Food Chem. 46: 3817-3822 https://doi.org/10.1021/jf980275m
  16. Molina-Molina, J. M., A. Hillenweck, I. Jouanin, D. Zalko, J. P. Cravedi, M. F. Fernandez, A. Pillon, J. C. Nicolas, N. Olea, and P. Balaguer. 2006. Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicol. Appl. Pharmacol. 216: 44-54 https://doi.org/10.1016/j.taap.2006.04.005
  17. Moorman, W. J., K. L. Cheever, S. R. Skaggs, J. C. Clark, T. W. Turner, K. L. Marlow, and S. M. Schrader. 2000. Male adolescent exposure to endocrine-disrupting pesticides: Vinclozolin exposure in peripubertal rabbits. Andrologia 32: 285-293 https://doi.org/10.1046/j.1439-0272.2000.00400.x
  18. Paolini, M., L. Pozzzetti, A. Sapone, A. Camerino, and G. Cantelli-Forti. 1998. Testosterone hydroxylase as multibiomaker of effect in evaluating vinclozolin cocarcinogenesis. Biomarkers 3: 191-203 https://doi.org/10.1080/135475098231219
  19. Rankin, G. O., V. J. Teets, D. W. Nicoll, and P. I. Brown. 1989. Comparative acute renal effect of three N-(3,5-dichlorophenyl) carboxide fungicides: N-(3,5-Dichlorophenyl) succinimide, vinclozolin and iprodione. Toxicology 56: 263-272 https://doi.org/10.1016/0300-483X(89)90090-5
  20. Readman, J. W., T. A. Albanis, D. Barcelo, S. Galassi, J. Troczynski, and G. P. Gabrielides. 1997. Fungicide contamination of Mediterranean estuarine waters. Mar. Poll. Bull. 34: 259-261 https://doi.org/10.1016/S0025-326X(97)00101-X
  21. Ruger, H. J. and H. J. Krambeck. 1994. Evaluation of the BIOLOG substrate metabolism system for classification of marine bacteria. Syst. Appl. Microbiol.17: 281-288 https://doi.org/10.1016/S0723-2020(11)80020-2
  22. Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI, Newark, DE
  23. Sandermann, H. J., H. W. Heller, N. Hoque, D. E. Pieper, and R. Winkler. 1998. A new intermediate in the mineralization of 3,4-dichloroaniline by the white rot fungus Phanerochaete chrysosporium. Appl. Envion. Microbiol. 64: 3305-3312
  24. Saravanan, B. C., C. Sreekumar, G. C. Bansal, D. Ray, J. R. Rao, and A. K. Mishra. 2003. A rapid MTT colorimetric assay to assess the proliferative index of two Indian strains of Theileria annulata. Vet. Parasitol. 113: 211-216 https://doi.org/10.1016/S0304-4017(03)00062-1
  25. Sohn, H. Y., H. J. Kim, E. J. Kum, M. S. Cho, J. B. Lee, J. S. Kim, and G. S. Kwon. 2006. Toxicity evaluation of endocrine disrupting chemicals using human HepG2 cell line, Lumbricus rubellus and Saccharomyces cerevisiae. J. Life Sci. 16: 919-924 https://doi.org/10.5352/JLS.2006.16.6.919
  26. Sonia, R., L. Marabini, M. Gervasoni, M. Ferraris, and E. Chiesara. 1998. Adaptation to oxidative stress: Effects of vinclozolin and iprodione on the HepG2 cell line. Toxicology 129: 183-191 https://doi.org/10.1016/S0300-483X(98)00086-9
  27. Szeto, S. Y., N. E. Burlinson, J. E. Rahe, and P. C. Oloffs. 1989. Kinetics of hydrolysis of the dicarboximide fungicide vinclozolin. J. Agric. Food Chem. 37: 523-529 https://doi.org/10.1021/jf00086a055
  28. Travkin, V. M., I. P. Solyanikova, I. M. Rietjens, J. Vervoort, W. J. Berkel, and L. A. Golovleva. 2003. Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J. Environ. Sci. Health B 38: 121-132 https://doi.org/10.1081/PFC-120018443
  29. U. S. Environmental Protection Agency. 1987. Guidance for the registration of pesticide products containing propanil as the active ingredient. U.S. EPA, Washington D.C.
  30. Valentovic, M. A., J. G. Ball, D. K. Anestis, and G. O. Rankin. 1995. Comparison of the in vitro toxicity of dichloroaniline structural isomers. Toxic. In Vitro 9: 75-81 https://doi.org/10.1016/0887-2333(94)00188-Z
  31. Valentovic, M. A., B. A. Rogers, M. K. Meadows, J. T. Conner, E. Williams, S. K. Hong, and G. O. Rankin. 1997. Characterization of methemoglobin formation induced by 3,5- dichloroaniline, 4-amino-2,6-dichlorophenol and 3,5-dichlorophenylhydroxylamine. Toxicolgy 188: 23-36
  32. Villedieu, C., M. Calman, and J. P. Calman. 1994. Mechanisms of dicarboximide ring opening in aqueous media: Procymidione vinclozolin and chlozolinate. Pestic. Sci. 41: 105-115 https://doi.org/10.1002/ps.2780410206
  33. Widehem, P., S. Ait-Aissa, C. Tixier, M. Sancelme, H. Veschambre, and N. Truffaut 2002. Isolation, characterization and diuron transformation capacities of a bacterial strain Arthobacter sp. N2. Chemosphere 46: 527-534 https://doi.org/10.1016/S0045-6535(01)00192-8
  34. Worthing, C. R. and R. J. Hance. 1991. The Pesticide Manual, 9th Ed. The British Crop Protection Council, pp. 172, 501. 703, 859 U.K.
  35. Wu, X. J., W. Q. Lu, P. H. Roos, and V. Mersch-Sundermann. 2005. Vinclozolin, a widely used fungicide, enhanced BaPinduced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression. Toxicol. Lett. 159: 83-88 https://doi.org/10.1016/j.toxlet.2005.04.010
  36. Yoon, J. H., S. T. Lee, and Y. H. Park. 1998. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194 https://doi.org/10.1099/00207713-48-1-187